Cite this paper:
LUO Congqiang, YI Chunlong, NI Leyi, GUO Longgen. Characterization of dominant and cellulolytic bacterial communities along the gut of silver carp Hypophthalmichthys molitrix during cyanobacterial blooms[J]. Journal of Oceanology and Limnology, 2017, 35(3): 624-633

Characterization of dominant and cellulolytic bacterial communities along the gut of silver carp Hypophthalmichthys molitrix during cyanobacterial blooms

LUO Congqiang1,2, YI Chunlong1,2, NI Leyi1, GUO Longgen1
1 Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Silver carp is one of the most important planktivorous fish in Chinese aquaculture and plays a significant role controlling cyanobacterial blooms. A balanced gut microbiota is crucial for growth and health of the host because of its important roles in immune defense, digestion of complex carbohydrates, and production of enterocytes. In our study, the dominant bacterial and cellulolytic bacterial (Clostridium I, Clostridium III, Clostridium XIVab, and Fibrobacter) communities in the contents and mucus of the silver carp gut (foregut, midgut, and hindgut) were analyzed by denaturing gradient gel electrophoresis and quantitative polymerase chain reaction (qPCR) analyses. The results revealed that the dominant and cellulolytic bacterial communities were significantly different among gut regions as well as in contents and mucus. Bacterial diversity and richness in contents and mucus increased along the gut and were higher in contents than those in local mucus. A sequence analysis of gut samples exhibited the conservative phylotypes of Proteobacteria, Actinobacteria, and Firmicutes. The gut of silver carp harbored an abundance of cellulolytic bacteria, particularly Clostridium XIVab. The foregut segment had the highest proportions of the four cellulolytic bacteria, followed by the midgut and hindgut. However, the proportions of cellulolytic species in the silver carp gut was much lower than those in the terrestrial vertebrate gastrointestinal tract. We conclude that gut bacteria could help silver carp obtain energy from cyanobacteria, which may be why silver carp can maintain high growth rates during cyanobacterial blooms.
Key words:    silver carp|bacteria communities|PCR-DGGE|qPCR   
Received: 2015-10-08   Revised: 2015-12-09
Tools
PDF (513 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LUO Congqiang
Articles by YI Chunlong
Articles by NI Leyi
Articles by GUO Longgen
References:
Bairagi A, Ghosh K S, Sen S K, Ray A K. 2002. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquacult. Int., 10(2): 109-121.
Bitterlich G. 1985. Digestive enzyme pattern of two stomachless filter feeders, Silver carp,Hypophthalmichthys molitrix Val., and bighead carp, Aristichthys nobilis rich. J. Fish Biol., 27(2): 103-112.
Chang W Y B. 1996. Major environmental changes since 1950 and the onset of accelerated eutrophication in Taihu Lake, China. Acta Palaeontol. Sinica, 35(2): 155-174. (in Chinese with English abstract)
Chen J, Xie P, Zhang D W, Ke Z X, Yang H. 2006. In situ studies on the bioaccumulation of microcystins in the phytoplanktivorous silver carp (Hypophthalmichthys molitrix) stocked in Lake Taihu with dense toxic Microcystis blooms. Aquaculture, 261(3): 1 026-1 038.
Choat J H, Clements K D. 1998. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst., 29(1): 375-403.
Franks A H, Harmsen H J M, Raangs G C, Jansen G J, Schut F, Welling G W. 1998. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-Targeted oligonucleotide probes. Appl. Environ. Microbiol., 64(9): 3 336-3 345.
Fromin N, Hamelin J, Tarnawski S, Roesti D, JourdainMiserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P. 2002. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ. Microbiol., 4(11): 634-643.
Jin X C, Hu X Z. 2003. A comprehensive plan for treating the major polluted regions of lake Taihu, China. Lakes Reserv. Res. Manage., 8(3-4): 217-230.
Kamjunke N, Schmidt K, Pflugmacher S, Mehner T. 2002. Consumption of cyanobacteria by roach (Rutilus rutilus): useful or harmful to the fish?. Freshwater Biol., 47(2): 243-250.
Ke Z X, Xie P, Guo L G, Liu Y Q, Yang H. 2007. In situ study on the control of toxic Microcystis blooms using phytoplanktivorous fish in the subtropical Lake Taihu of China: a large fish pen experiment. Aquaculture, 265(1-4): 127-138.
Ke Z X, Xie P, Guo L G. 2008. Phenotypic plasticity in gut length in the planktivorous filter-feeding silver carp (Hypophthalmichthys molitrix). The Scientific World Journal, 8: 169-175.
Kim D H, Brunt J, Austin B. 2007. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J. Appl. Microbiol., 102(6): 1 654-1 664.
Kobayashi Y, Shinkai T, Koike S. 2008. Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestionReview. Folia Microbiol., 53(3): 195-200.
Kohl K D, Miller A W, Marvin J E, Mackie R, Dearing M D. 2014. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota. Environ. Microbiol., 16(9): 2 869-2 878.
Langendijk P S, Schut F, Jansen G J, Raangs G C, Kamphuis G R, Wilkinson M H, Welling G M. 1995. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol., 61(8): 3 069-3 075.
Ley R E, Lozupone C A, Hamady M, Knight R, Gordon J I. 2008. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol., 6(10): 776-788.
Li M, Penner G B, Hernandez-Sanabria E, Oba M, Guan L L. 2009. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol., 107(6): 1 924-1 934.
Li T T, Long M, Gatesoupe F J, Zhang Q Q, Li A H, Gong X N. 2015. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microb. Ecol., 69(1): 25-36.
Liang Y L, Melack J M, Wang J. 1981. Primary production and fish yields in Chinese ponds and lakes. Trans. Am. Fish. Soc., 110(3): 346-350.
Lubbs D C, Vester B M, Fastinger N D, Swanson K S. 2009. Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J. Anim. Physiol. Anim. Nutr., 93(1): 113-121.
Malmuthuge N, Griebel P J, Guan L L. 2014. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl. Environ. Microbiol., 80(6): 2 021-2 028.
McDonald J E, Lockhart R J, Cox M J, Allison H E, McCarthy A J. 2008. Detection of novel Fibrobacter populations in landfill sites and determination of their relative abundance via quantitative PCR. Environ. Microbiol., 10(5): 1 310-1 319.
Mountfort D O, Campbell J, Clements K D. 2002. Hindgut fermentation in three species of marine herbivorous fish. Appl. Environ. Microbiol., 68(3): 1 374-1 380.
Muyzer G, de Waal E C, Uitterlinden A G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59(3): 695-700.
Nayak S K. 2010. Role of gastrointestinal microbiota in fish. Aquac. Res., 41(11): 1 553-1 573.
Niu Y, Shen H, Chen J, Xie P, Yang X, Tao M, Ma Z M, Qi M. 2011. Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu, China. Water Res., 45(14): 4 169-4 182.
Palframan R J, Gibson G R, Rastall R A. 2002. Effect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro. Anaerobe, 8(5): 287-292.
Roeselers G, Mittge E K, Stephens W Z, Parichy D M, Cavanaugh C M, Guillemin K, Rawls J F. 2011. Evidence for a core gut microbiota in the zebrafish. ISME J., 5(10): 1 595-1 608.
Romero J, Navarrete P. 2006. 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Microb. Ecol. 51(4): 422-430.
Stevens C E, Hume I D. 1996. Comparative Physiology of the Vertebrate Digestive System. 2nd edn. Cambrige University Press, Cambridge, UK. 400p.
Stevenson D M, Weimer P J. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification realtime PCR. Appl. Microbiol. Biotechnol., 75(1): 165-174.
Van Dyke M I, McCarthy A J. 2002. Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl. Environ. Microbiol., 68(4): 2 049-2 053.
Weimer P J, Waghorn G C, Odt C L, Mertens D R. 1999. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J. Dairy Sci., 82(1): 122-134.
Williams A G, Coleman G S. 1992. The Rumen Protozoa. Springer, New York, USA. 719p.
Wu S G, Gao T H, Zheng Y Z, Wang W W, Cheng Y Y, Wang G T. 2010. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 303(1-4): 1-7.
Wu S G, Wang G T, Angert E R, Wang W W, Li W X, Zou H. 2012. Composition, diversity, and origin of the bacterial community in Grass carp intestine. PLoS One, 7(2): e30440.
Xie P. 1999. Gut contents of silver carp, Hypophthalmichthys molitrix, and the disruption of a centric diatom, Cyclotella, on passage through the esophagus and intestine. Aquaculture, 180(3-4): 295-305.
Ye L, Amberg J, Chapman D, Gaikowski M, Liu W T. 2013. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J., 8(3): 541-551.
Zeng Q F, Gu X H, Mao Z G. 2014. In situ growth and photosynthetic activity of Cyanobacteria and phytoplankton dynamics after passage through the gut of silver carp (Hypophthalmichthys molitrix), bighead carp (Aristichthys nobilis), and Nile tilapia (Oreochromis niloticus). Hydrobiologia, 736(1): 51-60.
Zhang X, Xie P, Huang X P. 2008. A review of nontraditional biomanipulation. The Scientific World Journal, 8: 1 184-1 196.
Zhu H, Deng W J. 1983. Studies of the digestion of algae by fish: II. Microcystis aeruginosa and Euglena sp. Digestion and absorbed by silver carp and bighead. Transactions of the Chinese Ichthyological Society, (3): 77-91. (in Chinese)
Zhu L F, Wu Q, Dai J Y, Zhang S N, Wei F W. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. USA, 108(43): 17 714-17 719.
Copyright © Haiyang Xuebao