Cite this paper:
LIANG Sijie, GUO Li, LIN Genmei, ZHANG Zhongyi, DING Haiyan, WANG Yamei, YANG Guanpin. Improvement of Nannochloropsis oceanica growth performance through chemical mutation and characterization of fast growth physiology by transcriptome profiling[J]. Journal of Oceanology and Limnology, 2017, 35(4): 792-802

Improvement of Nannochloropsis oceanica growth performance through chemical mutation and characterization of fast growth physiology by transcriptome profiling

LIANG Sijie1,2, GUO Li1,2, LIN Genmei1,2, ZHANG Zhongyi1,2, DING Haiyan1,2, WANG Yamei1,2, YANG Guanpin1,2,3
1 Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China;
2 College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
3 Institutes of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
Abstract:
Nannochloropsis oceanica promises to be an industrial-level producer of polyunsaturated fatty acids. In this study, the fastest and slowest growing N. oceanica mutants were selected through N-methyl-N'-nitro-N-nitrosoguanidine mutation, and two mutant strains and the wild type (WT) subjected to transcriptome profiling. It was found that the OD680 reads at stationary growth phase of both WT and its mutants were proportional to their cell density, thus indicating their division rate and growth speed during culture. This chemical mutation was effective for improving growth performance, and the fast strain divided faster by upregulating the expression of genes functioning in the cell cycle and downregulating genes involved in synthesis of amino acids, fatty acids, and sugars as well as the construction of ribosome and photosynthetic machinery. However, the relationship among the effected genes responsible for cell cycle, metabolism of fatty and amino acids, and construction of ribosome and photosynthetic machinery remained unclear. Further genetic studies are required for clarifying the genetic/metabolic networks underpinning the growth performance of N. oceanica. These findings demonstrated that this mutation strategy was effective for improving the growth performance of this species and explored a means of microalgal genetic improvement, particularly in species possessing a monoploid nucleus and asexual reproduction.
Key words:    Nannochloropsis oceanica|mutation|cell cycle|transcriptome   
Received: 2016-01-27   Revised: 2016-04-25
Tools
PDF (528 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LIANG Sijie
Articles by GUO Li
Articles by LIN Genmei
Articles by ZHANG Zhongyi
Articles by DING Haiyan
Articles by WANG Yamei
Articles by YANG Guanpin
References:
Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A. 1987. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass, 12(1):37-47.
Chepurnov V A, Chaerle P, Roef L, Meirhaeghe A, Vanhoutte K. 2011. Classical breeding in diatoms:scientific background and practical perspectives. In:Seckbach J, Kociolek J P eds. The Diatom World. Springer, Netherlands. p.167-194.
Fang M Y, Jin L H, Zhang C, Tan Y Y, Jiang P X, Ge N, Li H P, Xing X H. 2013. Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS One, 8(10):e77046.
Gao C F, Wang Y, Shen Y, Yan D, He X, Dai J B, Wu Q Y. 2014. Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics, 15:582.
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7):644-652.
Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In:Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Springer US, New York, America. p.29-60.
Guillard R R, Ryther J H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2):229-239.
Guo L, Yang G P. 2015. The mechanism of the acclimation of Nannochloropsis oceanica to freshwater deduced from its transcriptome profiles. Journal of Ocean University of China, 14(5):922-930.
He M, Wang Y, Hua W P, Zhang Y, Wang Z Z. 2012. De Novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. PLoS One, 7(7):e42081.
Jinkerson R E, Jonikas M C. 2015. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. The Plant Journal, 82(3):393-412.
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(S1):D480-D484.
Kawata Y, Yamano N, Kojima H, Itoh S. 1991. Expression of salmon growth hormone in the cyanobacterium Agmenellum quadruplicatum. Biotechnology Letters, 13(12):851-856.
Kim S, Kim M J, Jung M G, Lee S, Baek Y S, Kang S H, Choi H G. 2013. De novo transcriptome analysis of an Arctic microalga, Chlamydomonas sp. Genes & Genomics, 35(2):215-223.
Lee R W, Jones R F. 1976. Lethal and mutagenic effects of nitrosoguanidine on synchronized Chlamydomonas. Molecular and General Genetics, 147(3):283-289.
Li B, Dewey C N. 2011. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12:323.
Mao X Z, Cai T, Olyarchuk J G, Wei L P. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21(19):3 787-3 793.
Mardis E R. 2008. The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24(3):133-141.
Nečas J. 1975. Physiological and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine in populations of chlorococcal algae. Biologia Plantarum, 17(2):130-138.
Ortiz-Marquez J C F, Nascimento M D, Zehr J P, Curatti L. 2013. Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends in Biotechnology, 31(9):521-529.
Ouyang L L, Chen S H, Li Y, Zhou Z G. 2013. Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14:396.
Pan K H, Qin J J, Li S, Dai W K, Zhu B H, Jin Y C, Yu W G, Yang G P, Li D F. 2011. Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica(eustigmatophyceae) as revealed by its genome sequence. Journal of Phycology, 47(6):1 425-1 432.
Petkov G, Ivanova A, Iliev A, Vaseva I. 2012. A critical look at the microalgae biodiesel. European Journal of Lipid Science and Technology, 114(2):103-111.
Rismani-Yazdi H, Haznedaroglu B Z, Hsin C, Peccia J. 2012. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnology for Biofuels, 5(1):74.
Storey J D, Tibshirani R. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100(16):9 440-9 445.
Sukenik A, Carmeli Y, Berner T. 1989. Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochloropsis sp. Journal of Phycology, 25(4):686-692.
Takouridis S J, Tribe D E, Gras S L, Martin G J O. 2015. The selective breeding of the freshwater microalga Chlamydomonas reinhardtii for growth in salinity. Bioresource Technology, 184:18-22.
Tang M L, Yu Z L. 2007. Bioeffects of low energy ion beam implantation:DNA damage, mutation and gene transter. Plasma Science and Technology, 9(4):513-518.
Tilman D, Socolow R, Foley J A, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R. 2009. Beneficial biofuels-the food, energy, and environment trilemma. Science, 325(5938):270-271.
Tjahjono A E, Kakizono T, Hayama Y, Nishio N, Nagai S. 1994. Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green alga Haematococcus pluvialis, and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers. Journal of Fermentation and Bioengineering, 77(4):352-357.
Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5):511-515.
Wijffels R H, Barbosa M J. 2010. An outlook on microalgal biofuels. Science, 329(5993):796-799.
Xue J, Niu Y F, Huang T, Yang W D, Liu J S, Li H Y. 2015. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metabolic Engineering, 27:1-9.
Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA-seq:accounting for selection bias. Genome Biology, 11(2):R14.
Zhang D H, Lee Y K. 1997. Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. Journal of Applied Phycology, 9(5):459-463.
Zhang N, Yu L. 2009. Mutation breeding of β-carotene producing strain B. trispora by low energy ion implantation. Plasma Science and Technology, 11(1):110-115.
Zhang X, Zhang X F, Li H P, Wang L Y, Zhang C, Xing X H, Bao C Y. 2014. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Applied Microbiology and Biotechnology, 98(12):5 387-5 396.
Copyright © Haiyang Xuebao