Cite this paper:
TENG Fei, FANG Guohong, XU Xiaoqing. Effects of internal tidal dissipation and self-attraction and loading on semidiurnal tides in the Bohai Sea, Yellow Sea and East China Sea:a numerical study[J]. HaiyangYuHuZhao, 2017, 35(5): 987-1001

Effects of internal tidal dissipation and self-attraction and loading on semidiurnal tides in the Bohai Sea, Yellow Sea and East China Sea:a numerical study

TENG Fei1, FANG Guohong1,2, XU Xiaoqing2
1 Ocean University of China, Qingdao 266100, China;
2 The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
A parameterized internal tide dissipation term and self-attraction and loading (SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M 2 and S2 in the Bohai Sea, Yellow Sea and East China Sea (BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide effect is important in the deep water regions. Numerical experiments show that artificial removal of tide-generating force in the BYECS can cause a significant difference (as much as 30 cm) in model output. Artificial removal of SAL tide in the BYECS can cause even greater difference, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.
Key words:    tides|tidal energy|internal tide dissipation|self-attraction and loading tide|Bohai, Yellow and East China Seas (BYECS)   
Received: 2016-03-19   Revised: 2016-05-11
PDF (6641 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by TENG Fei
Articles by FANG Guohong
Articles by XU Xiaoqing
Chen C S, Beardsley R C, Cowles G. 2006. An Unstructured Grid, Finite-Volume Coastal Ocean Model:FVCOM User Manual. SMAST/UMASSD. p.6-8.
Choi B H. 1980. A tidal model of the Yellow Sea and the Eastern China Sea. KORDI Report 80-82. Korea Ocean Research and Development Institute. 72p.
Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788):775-778.
Fang G, Kwok Y K, Yu K et al. 1999. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research, 19(7):845-869.
Fang G H, Wang Y G, Wei Z X et al. 2004. Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry. Journal of Geophysical Research Oceans, 109(C11):C11006.
Fang G H, Xu X Q, Wei Z X et al. 2013. Vertical displacement loading tides and self-attraction and loading tides in the Bohai, Yellow, and East China Seas. Science China Earth Sciences, 56(1):63-70.
Fang G H. 1986. Tide and tidal current charts for the marginal seas adjacent to China. Chinese Journal of Oceanology and Limnology, 4(1):1-16.
Gao X M, Wei Z X, Lü X Q et al. 2015. Numerical study of tidal dynamics in the South China Sea with adjoint method. Ocean Modelling, 92:101-114.
Green J A M, Nycander J. 2013. A comparison of tidal conversion parameterizations for tidal models. J. Phys.Oceanogr., 43(1):104-119.
Han G J, Li W, He Z J et al. 2006. Assimilated tidal results of tide gauge and TOPEX/Poseidon data over the China seas using a variational adjoint approach with a nonlinear numerical model. Advances in Atmospheric Sciences, 23(3):449-460.
Jan S, Chern C S, Wang J. 2002. Transition of tidal waves from the East to South China Seas over the Taiwan Strait:influence of the abrupt step in the topography. Journal of Oceanography, 58(6):837-850.
Jayne S R, St Laurent L C. 2001. Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28(5):811-814.
Li P L, Zuo J C, Wu D X et al. 2005. Numerical simulation of semidiurnal constituents in the Bohai Sea, the Yellow Sea and the East China Sea with assimilating TOPEX/Poseidon data. Oceanologia et Limnologia Sinica, 36(1):24-30. (in Chinese with English abstract)
Locarnini R A, Mishonov A V, Antonov J I et al. 2013. World Ocean Atlas 2013, Volume 1:Temperature. NOAA Atlas NESDIS 73, 40p.
Lü X Q, Fang G H. 2002. Numerical experiments of the adjoint model for M2 tide in the Bohai Sea. Acta Oceanologica Sinica, 24(1):17-24. (in Chinese with English abstract)
Lü X Q, Zhang J C. 2006. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Continental Shelf Research, 26(16):1 905-1 923.
Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M2 internal tides in the East China Sea.Journal of Geophysical Research, 109(C4):C04027,
Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28(8):929-937.
Pugh D T. 1987. Tides, Surges and Mean Sea-Level. John Wiley & Sons, Chichester. 471p.
Ray R D. 1998. Ocean self-attraction and loading in numerical tidal models. Marine Geodesy, 21(3):181-192.
St Laurent L C, Simmons H L, Jayne S R. 2002. Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters, 29(23):21-1-21-4.
Wahr J M. 1981. Body tides on an elliptical, rotating, elastic and oceanless earth. Geophys. J. Int., 64(3):677-703.
Wang K, Fang G H, Feng S Z. 1999. A 3-D numerical simulation of M2 tides and tidal currents in the Bohai Sea, the Huanghai Sea and the East China Sea. Acta Oceanologica Sinica, 21(4):1-13. (in Chinese with English abstract)
Wang Y H, Fang G H, Wei Z X et al. 2012. Cotidal charts and tidal power input atlases of the global ocean from TOPEX/Poseidon and JASON-1 altimetry. Acta Oceanologica Sinica, 31(4):11-23.
Yanagi T, Morimoto A, Ichikawa K. 1997. Co-tidal and corange charts for the East China Sea and the Yellow Sea derived from satellite altimetric data. Journal of Oceanography, 53:303-309.
Zhao B, Fang G, Cao D. 1993. Numerical modeling on the tides and tidal currents in the Eastern China Sea. Yellow Sea Research, 5:41-61.
Zhu X M, Bao X W, Song D H et al. 2012. Numerical study on the tides and tidal currents in Bohai Sea, Yellow Sea and East China Sea. Oceanologia et Limnologia Sinica, 43(6):1 103-1 113. (in Chinese with English abstract)
Zhu X M, Song D H, Bao X W et al. 2014. Tidal energy flux and dissipation in the Northwest Pacific. Journal of Tropical Oceanography, 33(1):1-9. (in Chinese with English abstract)
Zu T T, Gan J P, Erofeeva S Y. 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 55(2):137-154.

Related Articles:
1.LU Zaihua, ZHANG Zhihong, GU Jiannong.Modeling of low-frequency seismic waves in a shallow sea using the staggered grid difference method[J]. HaiyangYuHuZhao, 2017,35(5): 1010-1017