Cite this paper:
ZHAO Xia, CHEN Changwei, XU Weichen, ZHU Qingjun, GE Chengyue, HOU Baorong. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment[J]. HaiyangYuHuZhao, 2017, 35(5): 1094-1107

Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

ZHAO Xia1, CHEN Changwei1,2, XU Weichen1, ZHU Qingjun1, GE Chengyue1, HOU Baorong1
1 Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 School of Civil Engineering, Qingdao Technological University, Qingdao 266033, China
Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.
Key words:    antifungal activity|chitosan|linked copolymer|hymexazol   
Received: 2016-04-30   Revised: 2016-06-06
PDF (1428 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by ZHAO Xia
Articles by CHEN Changwei
Articles by XU Weichen
Articles by ZHU Qingjun
Articles by GE Chengyue
Articles by HOU Baorong
Abdel-Rehim S S, Khaled K F, Abd-Elshafi N S. 2006.Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative. Electrochim. Acta, 51(16):3 269-3 277.
Almeida E C, Diniz A V, Trava-Airoldi V J, Ferreira N G. 2005. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations. Thin Solid Films, 485(1-2) 241-246.
Balusamy T, Nishimura T. 2016. In-situ monitoring of the local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy. Electrochim. Acta, 199:305-313.
Blustein G, Di Sarli A R, Jaén J A, Romagnoli R, Del Amo B. 2007. Study of iron benzoate as a novel steel corrosion inhibitor pigment for protective paint films. Corros. Sci., 49(11):4 202-4 231.
Bonnel K, Le Pen C, Pébère N. 1999. E.I.S. characterization of protective coatings on aluminium alloys. Electrochim.Acta, 44(24):4 259-4 267.
Campos I, Palomar-Pardavé M, Amador A, VillaVelázquez C, Hadad J. 2007. Corrosion behavior of boride layers evaluated by the EIS technique. Appl. Surf. Sci., 253(23):9 061-9 066.
Chen B, Guizar-Sicairos M, Xiong G, Shemilt L, Diaz A, Nutter J, Burdet N, Huo S G, Mancuso J, Monteith A, Vergeer F, Burgess A, Robinson I. 2013. Threedimensional structure analysis and percolation properties of a barrier marine coating. Sci. Rep., 3:1 177.
Chen S Q, Wang P, Zhang D. 2014. Corrosion behavior of copper under biofilm of sulfate-reducing bacteria. Corros.Sci., 87:407-415.
Cheng Y L, Zhang Z, Cao F H, Li J F, Zhang J Q, Wang J M, Cao C N. 2004. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corros. Sci., 46(7):1 649-1 667.
Conde A, de Damborenea J J. 2002. Electrochemical impedance spectroscopy for studying the degradation of enamel coatings. Corros. Sci., 44(7):1 555-1 567.
Doherty M, Sykes J M. 2004. Micro-cells beneath organic lacquers:a study using scanning Kelvin probe and scanning acoustic microscopy. Corros. Sci., 46(5):1 265-1 289.
Ecco L G, Li J, Fedel M, Deflorian F, Pan J. 2014. EIS and in situ AFM study of barrier property and stability of waterborne and solventborne clear coats. Prog. Org.Coat., 77(3):600-608.
Fekry A M, Mohamed R R. 2010. Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochim. Acta, 55(6):1 933-1 939.
Fouda A S, Soliman A H. 2015. Corrosion protection of carbon steel in hydrochloric acid solutions usingthiourea derivatives. Protection of Metals and Physical Chemistry of Surfaces, 51(5):847-860.
Gergely A, Pászti Z, Hakkel O, Drotár E, Mihály J, Kálmán E. 2012. Corrosion protection of cold-rolled steel with alkyd paint coatings composited with submicron-structure typespolypyrrole-modified nano-size alumina and carbon nanotubes. Materials Science and Engineering:B, 177(18):1 571-1 582.
Gonçalves G S, Baldissera A F, Rodrigues L F Jr, Martini E M A, Ferreira C A. 2011. Alkyd coatings containing polyanilines for corrosion protection of mild steel.Synthetic Metals, 161(3-4):313-323.
Han W, Pan C, Wang Z Y, Yu G C. 2014. A study on the initial corrosion behavior of carbon steel exposed to outdoor wet-dry cyclic condition. Corros. Sci., 88:89-100.
Jorcin J B, Aragon E, Merlatti C, Pébère N. 2006. Delaminated areas beneath organic coating:alocal electrochemical impedance approach.Corros. Sci., 48(7):1 779-1 790.
Karthik D, Tamilvendan D, Venkatesa Prabhu G. 2014. Study on the inhibition of mild steel corrosion by 1,3-bis-(morpholin-4-yl-phenyl-methyl)-thiourea in hydrochloric acid medium. J. Saudi Chem. Soc., 18(6):835-844.
Lin J C, Chang S L, Lee S L. 1999. Corrosion inhibition of steel by thiourea and cations under incomplete cathodic protection in a 3.5% NaCl solution and seawater. J. Appl.Electrochem., 29(8):911-918.
Pilbáth A, SzabóT, Telegdi J, Nyikos L. 2012. SECM study of steel corrosion under scratched microencapsulated epoxy resin. Prog. Org. Coat., 75(4):480-485.
Raps D, Hack T, Wehr J, Zheludkevich M L, Bastos A C, Ferreira M G S, Nuyken O. 2009. Electrochemical study of inhibitor-containing organic-inorganic hybrid coatings on AA2024. Corros. Sci., 51(5):1 012-1 021.
Saremi M, Yeganeh M. 2014. Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings. Corros. Sci., 86:159-170.
Schneider O, Kelly R G. 2007. Localized coating failure of epoxy-coated aluminium alloy 2024-T3 in 0.5 M NaCl solutions:correlation between coatingdegradation, blister formation and local chemistry within blisters. Corros.Sci., 49(2):594-619.
Shao Y W, Jia C, Meng G Z, Zhang T, Wang F H. 2009. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel. Corros. Sci., 51(2):371-379.
Shi W, Dong Z H, Kong D J, Guo X P. 2013. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion. Cement Concrete Res., 48:25-33.
Tan Y J, Aung N N, Liu T. 2006a. Novel corrosion experiments using the wire beam electrode. (I) Studying electrochemical noise signatures from localized corrosion processes.Corros. Sci., 48(1):23-38.
Tan Y J, Liu T, Aung N N. 2006b. Novel corrosion experiments using the wire beam electrode:(Ⅲ) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases. Corros. Sci., 48(1):53-66.
Tan Y J. 1991. The effects of inhomogeneity in organic coatings on electrochemical measurements using a wire beam electrode:Part I. Prog. Org. Coat., 19(1):89-94.
Thu Le Q, Bonnet G, Compere C, Trong Le H, Touzain S. 2005. Modified wire beam electrode:a useful tool to evaluate compatibility between organic coatings and cathodic protection. Prog. Org. Coat., 52(2):118-125.
Twite R L, Bierwagen G P. 1998. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog. Org. Coat., 33(2):91-100.
Wang P, Zhang D, Qiu R, Wan Y, Wu J J. 2014. Green approach to fabrication of a super-hydrophobic film on copper and the consequent corrosion resistance. Corros. Sci., 80:366-373.
Wang T, Tan Y J. 2006. Understanding electrodeposition of polyaniline coatings for corrosion prevention applications using the wire beam electrode method. Corros. Sci., 48(8):2 274-2 290.
Welle A, Liao J D, Kaiser K, Grunze M, Mäder U, Blank N. 1997. Interactions of N, N'-dimethylaminoethanol with steel surfaces in alkaline and chlorine containing solutions.Appl. Surf. Sci., 119(3-4):185-198.
Yabuki A, Kawashima A, Fathona I W. 2014. Self-healing polymer coatings with cellulose nanofibers served as pathways for the release of a corrosion inhibitor. Corros.Sci., 85:141-146.
Yeganeh M, Keyvani A. 2016. The effect of mesoporous silica nanocontainers incorporation on the corrosion behavior of scratched polymer coatings. Prog.Org. Coat., 90:296-303.
Zhang B B, Zhao X, Li Y T, Hou B R. 2016. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach. RSC Adv., 6:35 455-35 465.
Zhang J T, Hu J M, Zhang J Q, Cao C N. 2004. Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution. Prog. Org.Coat., 49(4):293-301.
Zhang K Y, Wang L D, Sun W, Liu G C. 2014. Corrosion inhibitor embedded spherical micro-pits fabricated using cetyltrimethyl ammonium bromide as etching template for self-healing corrosion protection. Corros. Sci., 88:444-451.
Zhao X, Liu S, Wang X T, Hou B R. 2014. Surface modification of ZrO2 nanoparticles with styrene coupling agent and its effect on the corrosion behaviour of epoxy coating. Chin.J. Oceanol. Limnol., 32(5):1 163-1 171.
Zhao X, Wang J, Wang Y H, Kong T, Zhong L, Zhang W. 2007.Analysis of deterioration process of organic protective coating using EIS assisted by SOM network. Electrochem.Commun., 9(6):1 394-1 399.
Zheludkevich M L, Poznyak S K, Rodrigues L M, Raps D, Hack T, Dick L F, Nunes T, Ferreira M G S. 2010. Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros. Sci., 52(2):602-611.
Zhou X, Yang H Y, Wang F H. 2011.Corrosion Inhibition by Sorbitol/Diethylenetriamine Condensation Product for Carbon Steel in 3.5% NaCl Saturated Ca(OH)2 Solution.Acta Phys. Chim. Sin., 27(3):647-654.
Zin I M, Lyon S B, Hussain A. 2005. Under-film corrosion of epoxy-coated galvanised steel:an EIS and SVET study of the effect of inhibition at defects. Prog. Org. Coat., 52(2):126-135.