Cite this paper:
HUANG Zhihui, MA Aijun, WANG Xin'an, LEI Jilin, LI Weiye, WANG Ting, YANG Zhi, QU Jiangbo. Interaction of temperature and salinity on the expression of immunity factors in different tissues of juvenile turbot Scophthalmus maximus based on response surface methodology[J]. Journal of Oceanology and Limnology, 2015, 33(1): 28-36

Interaction of temperature and salinity on the expression of immunity factors in different tissues of juvenile turbot Scophthalmus maximus based on response surface methodology

HUANG Zhihui1,2, MA Aijun2, WANG Xin'an2, LEI Jilin2, LI Weiye2, WANG Ting2, YANG Zhi3, QU Jiangbo3
1 College of Fisheries, Ocean University of China, Qingdao 266071, China;
2 Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao 266071, China;
3 Yantai Tianyuan Aquatic Limited Corporation, Yantai 264003, China
Abstract:
Central Composite Design (CCD) and response surface methodology were used in the experiment to examine the combined effect of temperature (16-28℃) and salinity (18-42) on Hsp70 and IgM genes expression levels in turbot (Scophthalmus maximus) liver and kidney. The results showed that the coefficients of determination (R2 =0.965 2 for liver Hsp70, 0.972 9 for kidney Hsp70, 0.921 for liver IgM and 0.962 1 for kidney IgM) and probability values (P <0.01) were significant for the regression model. The interactive effect between temperature and salinity on liver Hsp70, kidney Hsp70 and liver IgM were not significant (P >0.05), while the interactive effect between temperature and salinity on kidney IgM was significant (P <0.01). The model equation could be used in practice for forecasting Hsp70 and IgM genes expression levels in the liver and kidney of juvenile turbot via applying statistical optimization of the response of interest, at which the maximum liver Hsp70, kidney Hsp70, liver IgM and kidney IgM of 1.48, 1.49, 2.48, and 1.38, respectively, were reached. The present model may be valuable in assessing the feasibility of turbot farming at different geographic locations and, furthermore, could be a useful reference for scientists studying the immunity of turbot.
Key words:    turbot (Scophthalmus maximus)|response surface methodology (RSM)|Central Composite Design (CCD)|Hsp70|immunoglobulin M (IgM)   
Received: 2014-02-11   Revised: 2014-05-16
Tools
PDF (1473 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by HUANG Zhihui
Articles by MA Aijun
Articles by WANG Xin'an
Articles by LEI Jilin
Articles by LI Weiye
Articles by WANG Ting
Articles by YANG Zhi
Articles by QU Jiangbo
References:
Alcorn S W, Murray A L, Pascho R J. 2002. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka). Fish Shellfish Immunol., 12: 303-334.
Arash K, Ali R T, Seyed M A R, Aram B. 2009. Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocolloids, 23: 2 369-2379.
Balasubramania P, Viswanathanb P, Vairamanic M. 2013. Response surface optimisation of process variables for microencapsulation of garlic (Allium sativum L.) oleoresin by spray drying. Biosystems Engineering, 114: 205-213.
Basu N, Todgham A E, Ackerman P A, Bibeau M R, Nakano K, Schulte P M, Iwama G K. 2002. Heat shock protein genes and their functional significance in fish. Gene, 295: 173-183.
Bowden T J, Thompson K D, Morgan A L, Gratacap R M L, Nikoskelainen S. 2007. Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol., 22: 695-706.
Clem L W, Faulmann E, Miller N W, Ellsaesser C, Lobb C J, Cuchens M A. 1984. Temperature-mediated processes in teleost immunity: differential effects of in vitro and in vivo temperatures on mitogenic responses of channel catfish lymphocytes. Dev. Comp. Immunol., 8: 313e22.
Dominguez M, Takemura A, Tsuchiya M, Nakamura S. 2004. Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia Oreochromis niloticus. Aquaculture, 241: 491-500.
Dong Y W, Dong S L, Meng X L. 2008. Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber (Apostichopus japonicus Selenka). Aquaculture, 276: 179-186.
DuBeau S F, Pan F, Tremblay G C, Bradley T M. 1998. Thermal shock of salmon in vivo induces the heat shock protein (Hsp70) and confers protection against osmotic shock. Aquaculture, 168: 311-323.
Ellis A E. 1999. Immunity to bacteria in fish. Fish Shellfish Immunol., 9: 291-308.
Ellis R J. 1996. Chaperonins: Introductory Perspective. Academic Press, New York.
Feige U, Morimoto R I, Yahara I, Polla B S. 1996. Stress- Inducible Cellular Responses. Birkhäuser Verlag. Basel. p.375-391.
Foss A, Imsland A K, Roth B, Schram E, Stefansson S O. 2007. Interactive effects of oxygen saturation and ammonia on growth and blood physiology in juvenile turbot. Aquaculture, 271: 244-251.
Frydman J, Höhfeld J. 1997. Chaperones get in touch: the hiphop connection. Trends Biochem. Sci., 22: 87-92.
Gaumet F, Boeuf G, Severe A, Leroux A, Mayergonstan N. 1995. Effects of salinity on the ionic balance and growth of juvenile turbot. Journal of Fish Biology, 47: 865-876.
Huang Z H, Ma A J, Wang X A. 2011. The immune response of the skin mucus of turbot (Scophthalmus maximus) at high temperature. Journal of Fish Disease, 34 (8): 619-627.
Imsland A K, Atle F, Snorri G. 2001. The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture, 198: 353-367.
Imsland A K, Björnsson B T, Gunnarsson S, Foss A, Stefansson S O. 2007. Temperature and salinity effects on plasma insulin-like growth factor-I concentrations and growth in juvenile turbot (Scophthalmus maximus). Aquaculture, 271: 546-552.
Jaya K, Sahoo P K, Swain T, Sahoo S K, Sahu A K, Mohanty B R. 2006. Seasonal variation in the innate immune parameters of the Asian catfish Clarias batrachus. Aquaculture, 252: 121-127.
Kinne O. 1963. The effects of temperature and salinity on marine and brackish water animals, 1. Temperature. Oceanogr. Mar. Biol. Annu. Rev., 1: 301-340.
Langston A L, Hoare R, Stefansson M, Fitzgerald R, Wergeland H, Mulcahy M. 2002. The effect of temperature on nonspecifi c defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol., 12: 61-76.
Lazić Z R. 2004. Design of Experiments in Chemical Engineering: A Practical Guide. Wiley-VCH, Weinheim. Le M C, Clerton P, Deschaux P, Troutaud P. 1997. Effects of environmental temperature on macrophage activities in carp. Fish Shellfish Immunol., 7: 209-212.
Leila M, Hamidi A A, Mohamed H I, Mohammad A Z. 2010. A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments. Bioresource Technology, 101: 893-900.
Li R, Brawley S H. 2004. Improved survival under heat stress in intertidal embryos (Fucus spp.) simultaneously exposed to hypersalinity and effect of parental thermal history. Mar. Biol., 144: 205-213.
Ljiljana R, Tatjana N, Srđan P. 2010. Modeling and optimization process parameters of acid activation of bentonite by response surface methodology. Applied Clay Science, 48: 154-158.
Lobb C J, Clem W. 1981. The metabolic relationship of the immunoglobulins in fish serum, cutaneous mucus, and bile. Journal of Immunology, 127: 1 525-1 529.
Louis-Cormier E A, Osterland C K. 1984. Evidence for a cutaneous secretory immune system in rainbow trout (Salmo gairdneri). Development and Comparative Immunology, 8: 71-80.
Low C, Wadsworth S, Burrells C, Secombes C J. 2003. Expression of immune genes in turbot (Scophthalmus maximus) fed a nucleotide-supplemented diet. Aquaculture, 221:23-40.
Martins M L, Xu D H, Shoemarker C A, Klesius P H. 2011. Temperature effects on immune response and hematological parameters of channel catfish Ictalurus punctatus vaccinated with live theronts of Ichthyophthirius multifiliis. Fish & Shellfish Immunology, 31: 774-780.
Matranga V, Toia G, Bonaventura R, Muller W E G. 2000. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones, 5 (2): 113-120.
Milleron R S, Bratton S B. 2006. Heat shock induces apoptosis independently of any known initiator caspase-activating complex. J. Biol. Chem., 281: 16 991-17 000.
Montgomery D C. 2001. Design and Analysis of Experiments (5 th edn). New York: Wiley. p.455-492.
Moraes F R, Martins M L. 2004. Condições predisponentes e principais enfermidades de teleósteos em piscicultura intensiva. In: Cyrino J E P, Urbinati E C, Fracalossi D M, Castagnolli N eds. Tópicos Especiais em Piscicultura de água Doce Tropical Intensiva. São Paulo: Tec Art. p.343-386.
Morimoto R I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones and negative regulators. Genes Dev., 12: 3 788-3 796.
Ndong D, Chen Y Y, Lin Y H, Vaseeharan B. 2007. The immune response of tilapia oreochromis mossambicus and its susceptibility to Streptococcus iniae under stress in low and high temperatures. Fish & Shellfish Immunology, 22: 686-694.
Parisa A, Abdul H P S, Babak S, Ahmad Z A, Issam A M. 2010. Optimization of bioresource material from oil palm trunk core drying using microwave radiation; a response surface methodology application. Bioresource Technology, 101: 8 396-8 401.
Prakash M J, Manikandan S. 2012. Response surface modeling and optimization of process parameters for aqueous extraction of pigments from prickly pear (Opuntia ficus - indica) fruit. Dyes and Pigments, 95: 465-472
Renfro J L, Brown M A, Parker S L, Hightower L E. 1993. The relationship of thermal and chemical tolerance to transepithelial transport by cultured flounder renal epithelium. J. Pharmacol. Exp. Ther, 265: 992-1 000.
Roberts R J. 2001. Fish Pathology. 3 rd ed. Philadelphia, PA: Saunders Publishing. p.143.
Sherman M Y, Goldberg A L. 2001. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron, 29: 15-32.
Simone C B, Thorsten B H, Reusch O R. 2012. Salinity change impairs pipefish immune defence. Fish Shellfish Immunol., 33: 1 238-1248.
Snyder M J, Ross S. 2004. Stress protein (HSP70 family) expression in intertidal benthic organisms: the example of Anthopleura elegantissima (Cnidaria: Anthozoa). Sci. Mar., 68: 155-162.
Somero G N. 2002. Thermal physiology and vertical zonation of intertidal animals: optima, limits, and cost of living. Integ. Comp. Biol., 42: 780-789.
Svåsand T, Otterå H M, Taranger G L. 2004. The status and perspectives for the species. In: Moksnes, E, Kjørsvik E, Olsen Y eds. Culture of Cold-Water Marine Fish. Fishing News Books, Blackwell Publishing, Oxford, UK. p.433-474.
Tadashi K, Takao K, Hiroshi A, Shin E, Masaaki N, Hideaki T, Tadashi Y, Seiji K, Ryuichi T. 2004. Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cells. J. Neuro - Oncol., 68 (2): 101-111.
Tilseth S. 1990. New marine fish species for cold-water farming. Aquaculture, 85: 235-245.
Tort L, Rotllant J, Liarte C L, Acerete L, Hernandez A, Ceulemans S, Coutteau P, Padros F. 2004. Effects of temperature decrease on feeding rates, immune indicators and histopathological changes of gilthead sea bream Sparus aurata fed with an experimental diet. Aquaculture, 229: 55-56.
Wang F Y, Yang H S, Gao F, Liu G B. 2008. Effects of acute temperature or salinity stress on the immune response in sea cucumber, Apostichopus japonicus. Comparative Biochemistry and Physiology, Part A, 151: 491-498.
Watts M, Munday B L, Burke C M. 2001. Immune responses of teleost fish. Aust. Vet. J., 79: 570e4.
Copyright © Haiyang Xuebao