Cite this paper:
KANG Caixia, KUBA Takahiro, HAO Aimin, ISERI Yasushi, LI Chunjie, ZHANG Zhenjia. Oxidative stress responses of submerged macrophyte Vallisneria asiatica to different concentrations of cyanobacteria[J]. Journal of Oceanology and Limnology, 2015, 33(2): 364-371

Oxidative stress responses of submerged macrophyte Vallisneria asiatica to different concentrations of cyanobacteria

KANG Caixia1, KUBA Takahiro1, HAO Aimin2, ISERI Yasushi3, LI Chunjie4, ZHANG Zhenjia4
1 Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
2 Research Institute for East Asia Environments, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
3 West Japan Engineering Consultants, Inc., Japan, 1-1-1 Watanabe Road, Chuo-ku, Fukuoka 810-0004, Japan;
4 School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China
Abstract:
In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was >109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of V. asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.
Key words:    algal bloom|physiological response|macrophyte restoration|Vallisneria asiatica   
Received: 2014-04-01   Revised: 2014-08-05
Tools
PDF (403 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by KANG Caixia
Articles by KUBA Takahiro
Articles by HAO Aimin
Articles by ISERI Yasushi
Articles by LI Chunjie
Articles by ZHANG Zhenjia
References:
Alscher R G, Erturk N, Heath L S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Exp. Bot., 53 : 1 331-1 341.
Asada K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50 : 83-86.
Beauchamp C, Fridovich I. 1971. Superoxide dismutases: improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44 : 276-287.
Blokhina O, Virolainen E, Fagerstedt K V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 91 : 179-194.
Bloom A J, Chapin F S, Mooney H A. 1985. Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Syst., 16 : 363-392.
Bowler C, Montagu M V, Inze D. 1992. Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol., 43 : 83-116.
Britto D T, Kronzucker H J. 2002. NH 4 + toxicity in higher plants: a critical review. Plant Physiol., 159 : 567-584.
Buryskova B, Hilscherova K, Babica P, Vrskova D, Marsalek B, Blaha L. 2006. Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins. Aquat. Toxicol., 80 : 346-354.
Cao H S, Kong F X, Tan J K, Zhang X F, Tao Y, Yang Z. 2005. Recruitment of total phytoplankton, chlorophytes and cyanobacteria from lake sediments recorded by photosynthetic pigments in a large, shallow lake (Lake Taihu, China). Internat. Rev. Hydrobiol., 90 (4): 347-357.
Cao T, Ni L Y, Xie P. 2004. Acute biochemical responses of a submersed macrophyte, Potamogeton crispus L., to high ammonium in an aquarium experiment. J. Freshwater Ecol., 19 : 279-284.
Carmichael W W. 1992. Cyanobacteria secondary metabolites: the cyanotoxins. Appl. Bacteriol., 72 : 445-459.
Carmichael W W. 1997. The cyanotoxins. Adv. Bot. Res., 27 : 211-256.
Chen Y W, Fan C X, Teubner K, Dokulil M. 2003. Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China: an 8-year investigation. Hydrobiologia, 506-509 : 273-279.
Chu J Z H, Wang S R, Jin X C. 2006. Effects of sediments nutrition condition on the growth and the photosynthesis of Hydrilla verticillata. Ecol. Environ., 15 : 702-707. (in Chinese)
Codd G A. 1995. Cyanobacterial toxins: occurrence, properties and biological significance. Water Sci. Technol., 32 : 149- 156.
Creed J C, Norton T A, Kain-Jones J M. 1997. Intraspecifi c competition in Fucus serratus germlings: the interaction of light, nutrient and density. J Exp. Mar. Biol. Ecol., 212 : 211-223.
Foyer C H, Noctor G. 1999. Leaves in the dark see the light. Science, 284 : 599-601.
Ge J, Li J J, Zhang J, Yang Z. 2012. Time-dependent oxidative stress responses of submerged macrophyte Vallisneria natans seedlings exposed to ammonia in combination with microcystin under laboratory conditions. Bull. Environ. Contam. Toxicol., 89 : 67-72.
Greenfield R E, Price V E. 1954. Liver catalase Ι: A. manometric determination of catalase activity. Biol. Chem., 209 : 355-361.
Hao A M, Kuba T, Iseri Y, Zhang Z J, Liu Y X, Haraguchi T. 2011. Effects of copper ion on antioxidant function of Vallisneria asiatica. Ecol. Civil Eng., 14 : 115-122. (in Japanese)
He J, Gu X H, Liu G F. 2008. Aquatic macrophytes in East Lake Taihu and its interaction with water environment. J. Lake Sci., 20 : 790-795. (in Chinese)
He S Y, Li J X, Wu Y T. 2007. Application of aquatic plant in lake eutrophication of the ecological restoration. Water Resour. Prot., 23 : 78-81. (in Chinese)
Heath R L, Packer L. 1968. Photoperoxidation in isolated chloroplasts Ι. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125 : 189-198.
Jiang J L, Gu X Y, Song R, Wang X R, Yang L Y. 2011. Microcystin-LR induced oxidative stress and ultrastructural alterations in mesophyll cells of submerged macrophyte Vallisneria natans (Lour.) Hara. J. Hazard Mater., 190 : 188-196.
Kochba J, Lavee S, Spiegel-Roy P. 1977. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic ‘Shamouti' orange ovular callus lines. Plant Cell Physiol., 18 : 463-467.
Li D H, Li G B, Chen W X, Liu Y D. 2009. Interactions between a cyanobacterial bloom (Microcystis) and the submerged aquatic plant Ceratophyllum oryzetorum Kom. Chin. J. Oceanol. Limn., 27 (1): 38-42.
Li J C, Maezawa S, Nakano K. 2002. Determination of superoxide by nitrite ion method. Hortic. Res., 1 : 279- 282. (in Japanese)
Liao B H, Liu H Y, Zeng Q R, Yu P Z, Probst A, Probst J L. 2005. Complex toxic effects of and acid rain on growth of kidney bean (Phaseolus vulgaris L.). Environ. Intern., 31 : 891-895.
Lowry O H, Rosebrough N J, Farr A L, Randal R J. 1951. Protein measurement with the folin phenol reagent. Biol. Chem., 193 : 265-275.
Miller G, Shulaev V, Mittler R. 2008. Reactive oxygen signaling and abiotic stress. Plant Physiol., 133 : 481-489.
Peuthert A, Lawton L, Pfl ugmacher S. 2008. In vivo influence of cyanobacterial toxins on enzyme activity and gene expression of protein phosphatases in Alfalfa (Medicago sativa). Toxicon, 52 : 84-90.
Peutherta A, Pfl ugmacher S. 2010. Influence of the cyanotoxin microcystin-LR on tocopherol in Alfalfa seedlings (Medicago sativa). Toxicon, 56 : 411-417.
Pfl ugmacher S. 2002. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ. Toxicol., 17 : 407-413.
Pfl ugmacher S. 2004. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin- LR. Aquat. Toxicol., 70 : 169-178.
Schalles J F, Gitelson A A, Yacobi Y Z, Kroenke A E. 1998. Estimation of chlorophyll a from time series measurements of high spectral resolution refl ectance in an eutrophic lake. J. Phycol., 34 : 383-390.
Schriver P, Bogestrand J, Jeppesen E, Søndergaard M. 1995. Impact of submerged macrophytes on fi sh-zooplanktonphytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biol., 33 : 255-270.
Shibata S. 2006. Effect of density control on tree growth at ecological tree planting sites in Japan. Landscape Ecol. Eng., 2 : 13-19.
Wang C, Zhang S H, Wang P F, Hou J, Li W, Zhang W J. 2008. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara. Aquat. Toxicol., 87 : 88-98.
Xie Y H, An S, Wu B. 2005. Resource allocation in the submerged plant Vallisneria natans related to sediment type, rather than water-column nutrients. Freshwater Biol., 50 : 391-402.
Yin Y, Wang X R, Sun Y Y, Guo H Y, Yin D Q. 2008. Bioaccumulation and oxidative stress in submerged macrophyte Ceratophyllum demersum L. upon exposure to pyrene. Environ. Toxicol., 23 : 328-336.
Zhang M, Wang Z Q, Xu J, Liu Y Q, Ni L Y, Cao T, Xie P. 2011. Ammonium, microcystins, and hypoxia of blooms in eutrophic water cause oxidative stress and C-N imbalance in submersed and floating-leaved aquatic plants in Lake Taihu, China. Chemosphere, 82 : 329-339.
Copyright © Haiyang Xuebao