Cite this paper:
ZHANG Chunhui, LIU Jianguo, ZHANG Litao. Cell cycles and proliferation patterns in Haematococcus pluvialis[J]. Journal of Oceanology and Limnology, 2017, 35(5): 1205-1211

Cell cycles and proliferation patterns in Haematococcus pluvialis

ZHANG Chunhui1,3, LIU Jianguo1,2, ZHANG Litao1,2
1 National & Local Joint Engineering Laboratory of Ecological Mariculture, Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 National-Local Joint Engineering Research Center forHaematococcus pluvialisand Astaxanthin Products, Yunnan Alphy Biotech Co., Ltd., Chuxiong 675012, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages:the motile stage and the non-motile stage. All the cells can be classified into forms as follows:motile cell, nonmotile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.
Key words:    size frequency|length-weight|sex ratio|allometric growth|Clupisoma garua   
Received: 2016-03-31   Revised: 2016-05-06
Tools
PDF (821 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHANG Chunhui
Articles by LIU Jianguo
Articles by ZHANG Litao
References:
Chen G Q, Wang B B, Han D X, Sommerfeld M, Lu Y H, Chen F, Qiang H. 2015. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis inHaematococcuspluvialis(Chlorophyceae).The Plant Journal, 81(1):95-107.
Dong Q L, Xing X Y, Cai Y, Wu H X, Lv M J. 2008.Phycocyanin synthesis in green alga Haematococcus pluvialis during a novel reproduction process. Chemical Engineering (China), 36(10):55-57, 61. (in Chinese with English abstract)
Elliot A M. 1934. Morphology and life history of Haematococcus pluvialis. Arch. Protistenk., 82:250-272.
Gao G L, Cheng J Y, Ma J. 2014. Research review of Haematococcus pluvialis and astaxathin. Journal of Fisheries of China, 38(2):308-315. (in Chinese with English abstract)
Giannelli L, Yamada H, Katsuda T, Katsuada T. 2015. Effects of temperature on the astaxanthin productivity and light harvesting characteristics of the green alga Haematococcus pluvialis. J. Biosci. Bioeng., 119(3):345-350.
Goswami G, Chaudhuri S, Dutta D. 2010. The present perspective of astaxanthin with reference to biosynthesis and pharmacological importance. World J. Microbiol.Biotechnol., 26(11):1 925-1 939.
Guerin M, Huntley M E, Olaizola M. 2003. Haematococcus astaxanthin:applications for human health and nutrition.Trends Biotechnol., 21(5):210-216.
Hagen C, Siegmund S, Braune W. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. European Journal of Phycology, 37(2):217-226.
Hoffman Y, Aflalo C, Zarka A, Gutman J, James T Y, Boussiba S. 2008. Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycological Research, 112(1):70-81.
Imamoglu E, Dalay M C, Sukan F V. 2010. Semi-continuous cultivation of Haematococcus pluvialis for commercial production. Applied Biochemistry and Biotechnology, 160(3):764-772.
Johnson E A, Schroeder W A. 1996. Biotechnology of astaxanthin production in Phaffia rhodozyma. In:Takeda G R, Teranishi R, Williams P J, Kobayashi A eds.
Biotechnology for Improved Foods and Flavors. American Chemical Society, Washington, DC. p.39-50.
Kobayashi M, Kurimura Y, Kakizono T, Nishio N, Tsuji Y. 1997. Morphological changes in the life cycle of the green alga Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 84(1):94-97.
Lee Y K, Ding S Y. 1994. Cell cycle and accumulation of astaxanthin in Haematococcus lacustris (ChloroPhyta). J.Phycol., 30(3):445-449.
Liu J G, van der Meer J, Zhang L T, Zhang Y. 2016. Cultivation of Haematococcus pluvialis for astaxanthin production. In:Slocombe S P, Benemann J R eds. Microalgal Production for Biomass and High-Value Products. CRC Press, New York, USA. p.267-293.
Liu J G, Yin M Y, Zhang J P, Liu W, Meng Z C. 2002. Dynamic changes of inorganic nitrogen and astaxanthin accumulation in Haematococcus pluvialis. Chinese Journal of Oceanology and Limnology, 20(4):358-364.
Liu J G, Yin M Y, Zhang J P, Meng Z C, Bourne W F. 2000.Studies of cell cycle in Haematococcus pluvialis.Oceanologia et Limnologia Sinica, 31(2):145-150. (in Chinese with English abstract)
López M C G M, Sánchez E D R, López J L G, Fernández F G A, Sevilla J M F, Rivas J, Guerrero M G, Grima E M. 2006. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. Journal of Biotechnology, 123(3):329-342.
Mesquita J F, Santos M F. 1984. Ultrastructural study of Haematococcus lacustris (Griod) Rostafinski(Volvocales). Ⅱ. Mitosis and cytokinesis. Cytologia, 49(1):229-241.
Strittmatter M, Guerra T, Silva J, Gachon C M M. 2016. A new flagellated dispersion stage in Paraphysoderma sedebokerense, a pathogen of Haematococcus pluvialis.Journal of Applied Phycology, 28(3):1 553-1 558.
Sun Y H, Liu J G, Zhang X L, Lin W. 2008. Strain H2-419-4 of Haematococcus pluvialis induced by ethyl methanesulphonate and ultraviolet radiation. Chinese Journal of Oceanology and Limnology, 26(2):152-156.
Ugwu C U, Aoyagi H, Uchiyama H. 2008. Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10):4 021-4 028.
Yin M Y, Liu J G, Zhang J P, Meng Z C. 1998. Review of studies of Haematococcus pluvialis and its astaxanthin.
Transaction of Oceanology and Limnology, (2):53-62. (in Chinese with English abstract) Zhuang H R, Chen W L, Lu H S, Zhong X R, Chen L Y. 2001.
The research of ultrastructure for different morphological cells of Haematococcus pluvialis. Chinese Journal of Applied & Environmental Biology, 7(5):428-433. (in Chinese with English abstract)
Copyright © Haiyang Xuebao