Cite this paper:
LIU Kun, XU Zhenhua, YIN Baoshu. Three-dimensional numerical simulation of internal tides that radiated from the Luzon Strait into the Western Pacific[J]. HaiyangYuHuZhao, 2017, 35(6): 1275-1286

Three-dimensional numerical simulation of internal tides that radiated from the Luzon Strait into the Western Pacific

LIU Kun1,2,4, XU Zhenhua1,2,3, YIN Baoshu1,2,3
1 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Key Laboratory of Ocean Circulation and Waves(KLOCAW), Chinese Academy of Sciences, Qingdao 266071, China;
3 Laboratory for Ocean and Climate Dynamics, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Recent satellite altimeter observations have indicated that internal tides (ITs) from the Luzon Strait (LS) propagate more than 2 500 km into the Western Pacific (WP). This study used a high-resolution three-dimensional numerical model to reproduce and examine the ITs radiation process. The propagation of diurnal and semidiurnal ITs showed different patterns and variations. Diurnal ITs with lower frequency were affected more by the earth's rotation and they were bent more toward the equator than semidiurnal ITs. ITs phase speeds are functions of latitude and diurnal ITs showed greater distinctions of phase speeds during propagation. For M2 ITs, the wavelength remained nearly unchanged but the beam width increased significantly during propagation away from the LS. For diurnal ITs (K1 and O1), the wavelength decreased noticeably with latitude, while the beam width varied little during propagation because of blocking by land. Baroclinic energy was also examined as a complement to satellite results reported by Zhao (2014). The magnitude of the generated baroclinic energy flux reduced remarkably within 300 km from the generation site but it then decayed slowly when propagating into abyssal sea. Baroclinic energy of diurnal ITs was found to dissipate at a slower rate than semidiurnal ITs along the main propagation path in the WP.
Key words:    internal tides|numerical simulation|Luzon Strait|Western Pacific   
Received: 2016-01-08   Revised: 2016-03-15
Tools
PDF (2500 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LIU Kun
Articles by XU Zhenhua
Articles by YIN Baoshu
References:
Alford M H, MacKinnon J A, Nash J D et al. 2011. Energy flux and dissipation in Luzon Strait:two tales of two ridges. J.Phys. Oceanogr., 41(11):2 211-2 222.
Alford M H, Peacock T, MacKinnon J A et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550):65-69.
Beardsley R C, Duda T F, Lynch J F et al. 2004. Barotropic tide in the northeast South China Sea. IEEE J. Oceanic Eng., 29(4):1 075-1 086.
Buijsman M C, Klymak J, Legg S et al. 2013. Threedimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44(3):850-869.
Cacchione D A, Pratson L F, Ogston A S. 2002. The shaping of continental slopes by internal tides. Science, 296(5568):724-727.
Cai S Q, Chen R Y, Qiu Z. 2000. Numerical study about influence of bottom topographic change on generation of internal tide. Journal of Oceanography in Taiwan Strait, 19(1):74-81. (in Chinese with English abstract)
Carter G S, Fringer O B, Zaron E D. 2012. Regional models of internal tides. Oceanography, 25(2):56-65.
Carter G S, Merrifield M A, Becher J M et al. 2008. Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38(10):2 205-2 223.
Chapman D C. 1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys.Oceanogr., 15(8):1 060-1 075.
Cummins P F, Oey L Y. 1997. Simulation of barotropic and baroclinic tides off Northern British Columbia. J. Phys.Oceanogr., 27(5):762-781.
Di Lorenzo E, Young W R, Smith S L. 2006. Numerical and analytical estimates of M2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr., 36(6):1 072-1 084.
Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol., 19(2):183-204.
Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788):775-778.
Fan Z S, Zhang Y L, Song M. 2008. A study of SAR remote sensing of internal solitary waves in the north of the South China Sea:Ⅱ. Simulation of SAR signatures of internal solitary waves. Acta Oceanologica Sinica, 27(5):36-48.
Flather R A. 1976. A tidal model of the northwest European continental shelf. Mem. Soc. R. Sci. Liege, 10(6):141-164.
Garrett C. 2003. Internal tides and ocean mixing. Science, 301(5641):1 858-1 859.
Hsin Y C, Wu C R, Chao S Y. 2012. An updated examination of the Luzon Strait transport. J. Geophys. Res., 117(C3):C03022.
Jan S, Lien R C, Ting C H. 2008. Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64(5):789-802.
Kang D J, Fringer O. 2012. Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys.Oceanogr., 42(2):272-290.
Kerry C G, Powell B S, Carter G S. 2013. Effects of remote generation sites on model estimates of M2 internal tides in the Philippine Sea. J. Phys. Oceanogr., 43(1):187-204.
Liao G H, Yuan Y C, Yang C H et al. 2012. Current observations of internal tides and parametric subharmonic instability in Luzon Strait. Atmosphere-Ocean, 50(S1):59-76.
Liu A K, Chang Y S, Hsu M K et al. 1998. Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res., 103(C4):7 995-8 008, http://dx.doi.org/10.1029/97JC01918.
Liu A K, Su F C, Hsu M K et al. 2013. Generation and evolution of mode-two internal waves in the South China Sea. Cont.Shelf Res., 59:18-27, http://dx.doi.org/10.1016/j.csr.2013.02.009.
Ma B B, Lien R C, Ko D S. 2013. The variability of internal tides in the Northern South China Sea. J. Oceanogr., 69(5):619-630.
Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev.Geophys., 20(4):851-875.
Merrifield M A, Holloway P E. 2002. Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys.Res., 107(C8):5-1-5-12.
Miao C B, Chen H B, Lü X Q. 2011. An isopycnic-coordinate internal tide model and its application to the South China Sea. Chin. J. Oceanol. Limonol., 29(6):1 339-1 356.
Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J.Geophys. Res., 109(C4):C04027.
Niwa Y, Hibiya T. 2011. Estimation of baroclinic tide energy available for deep ocean mixing based on threedimensional global numerical simulations. J. Oceanogr., 67(4):493-502.
Rainville L, Johnston T M S, Carter G S et al. 2010. Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40(2):311-325.
Ray R D, Cartwright D E. 2001. Estimates of internal tide energy fluxes from Topex/Poseidon altimetry:central North Pacific. Geophys. Res. Lett., 28(7):1 259-1 262.
Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4):347-404.
Shriver J F, Arbic B K, Richman J G et al. 2012. An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J. Geophys. Res., 117(C10):C10024.
Simmons H L, Hallberg R W, Arbic B K. 2004. Internal wave generation in a global baroclinic tide model. Deep Sea Res.Part Ⅱ Top. Stud. Oceanogr., 51(25-26):3 043-3 068.
Tian J W, Zhou L, Zhang X Q et al. 2003. Estimates of M2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett., 30(17):1 889.
Vitousek S, Fringer O B. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling, 40(1):72-86.
Xu Z H, Yin B S, Hou Y J et al. 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. J. Geophys. Res., 118(1):197-211.
Xu Z H, Yin B S, Hou Y J et al. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. J. Mar. Syst., 134:101-112.
Xu Z H, Yin B S, Hou Y J. 2010. Highly nonlinear internal solitary waves over the continental shelf of the northwestern South China Sea. Chin. J. Oceanol.Limonol., 28(5):1 049-1 054.
Xu Z H, Yin B S, Hou Y J. 2011. Multimodal structure of the internal tides on the continental shelf of the northwestern South China Sea. Estuarine, Coastal and Shelf Science, 95(1):178-185.
Xu Z H, Yin B S, Yang H W et al. 2012. Depression and elevation internal solitary waves in a two-layer fluid and their forces on cylindrical piles. Chin. J. Oceanol.Limonol, 30(4):703-712.
Zhao Z X, Klemas V, Zheng Q A et al. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res.Lett., 31(6):L06302.
Zhao Z X. 2014. Internal tide radiation from the Luzon Strait.J. Geophys. Res., 119(8):5 434-5 448.