Cite this paper:
SONG Lina, LI Yuanlong, LIU Chuanyu, WANG Fan. Subthermocline anticyclonic gyre east of Mindanao and its relationship with the Mindanao Undercurrent[J]. HaiyangYuHuZhao, 2017, 35(6): 1303-1318

Subthermocline anticyclonic gyre east of Mindanao and its relationship with the Mindanao Undercurrent

SONG Lina1,2, LI Yuanlong1,3, LIU Chuanyu1,4, WANG Fan1,4
1 Key Laboratory of Ocean Circulation and Waves(KLOCAW), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado 80309, USA;
4 Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
The quasi-permanent anticyclonic gyre (ACG) east of Mindanao is a dominant feature of the subthermocline circulation in the southern Philippine Sea, and it is believed closely associated with the continuous northward alongshore flow of the Mindanao Undercurrent (MUC). In this study, the structure and variability of this ACG were investigated using the 1950-2012 output of the Oceanic General Circulation Model for the Earth Simulator (OFES), which can reproduce well the structure of the climatological intermediate-layer circulation and satellite-observed sea level variations in the southern Philippine Sea. Between 26.8-27.3 σθ, the ACG covers a large area from the Mindanao coast to 131·E and from 3·N to 10·N. Its anticyclonic flow structure is unrelated to the surface Halmahera Eddy. The eddy-resolving simulation of the OFES revealed that the ACG consists of two components. The southern ACG (SACG) is centered at~6·N, while the northern ACG (NACG) is centered at~10·N. Seasonal and interannual variations of the ACG are linked to the variations of the northward MUC transport along the Mindanao coast, and the role of the SACG is more important than the NACG. Stronger (weaker) ACGs lead to greater (smaller) MUC transport. On the interannual timescale, the SACG shows a spectrum peak at 4-8 years, while the NACG has enhanced power within the 3-5-year band. A lead-lag correlation analysis indicates that interannual variations of the ACGs and the MUC transport are partly associated with the El Niño-Southern Oscillation. Possible causes for the ACG variability are discussed.
Key words:    subthermocline circulation|anticyclonic gyre|Mindanao Undercurrent|seasonal and interannual variability|Halmahera Eddy   
Received: 2016-04-16   Revised: 2016-06-08
PDF (3437 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by SONG Lina
Articles by LI Yuanlong
Articles by LIU Chuanyu
Articles by WANG Fan
Arruda W Z, Nof D. 2003. The Mindanao and Halmahera Eddies-twin eddies induced by nonlinearities. J. Phys.Oceanogr., 33(12):2 815-2 830.
Chelton D B, Schlax M, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Prog.Oceanogr., 91(2):167-216.
Chen Z H, Wu L X. 2012. Long-term change of the Pacific North Equatorial Current bifurcation in SODA. J.Geophys. Res. Oceans, 117(C6):C06016,
Chiang T L, Qu T D. 2013. Subthermocline eddies in the western equatorial Pacific as shown by an eddy-resolving OGCM. J. Phys. Oceanogr., 43(7):1 241-1 253.
Chiang T L, Wu C R, Qu T D, Hsin Y C. 2015. Activities of 50-80 day subthermocline eddies near the Philippine coast. J. Geophys. Res. Oceans, 120(5):3 606-3 623.
Ducet N, Le Traon P Y, Reverdin G. 2000. Global highresolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. Oceans, 105(C8):19 477-19 498.
Duchon C E. 1979. Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18(8):1 016-1 022.
Fine R A, Lukas R, Bingham F M, Warner M J, Gammon R H. 1994. The western equatorial Pacific:a water mass crossroads. J. Geophys. Res. Oceans, 99(C12):25 063-25 080.
Firing E, Kashino Y, Hacker P. 2005. Energetic subthermocline currents observed east of Mindanao. Deep Sea Res. Part Ⅱ Top. Stud. Oceanogr., 52(3-4):605-613.
Gill A E. 1982. Atmosphere-Ocean Dynamics, Vol.30.Academic Press, London.
Hamlington B D, Leben R R, Nerem R S, Han W, Kim K Y. 2011. Reconstructing sea level using cyclostationary empirical orthogonal functions. J. Geophys. Res. Oceans, 116(C12):C12015,
Hu D X, Cui M C, Qu T D, Li Y X. 1991. A subsurface northward current off Mindanao identified by dynamic calculation. Elsevier Oceanogr. Ser., 54:359-365,
Hu D X, Wu L X, Cai W J, Gupta A S, Ganachaud A, Qiu B, Gordon A L, Lin X P, Chen Z H, Hu S J, Wang G J, Wang Q Y, Sprintall J, Qu T D, Kashino Y J, Wang F, Kessler W S. 2015a. Pacific western boundary currents and their roles in climate. Nature, 522(7556):299-308.
Hu S J, Hu D X, Guan C, Wang F, Zhang L L, Wang F J, Wang Q Y. 2015b. Interannual variability of the mindanao current/undercurrent in direct observations and numerical simulations. J. Phys. Oceanogr., 46(2):483-499.
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3):437-472.
Kashino Y, Atmadipoera A, Kuroda Y, Lukijanto. 2013.Observed features of the Halmahera and Mindanao Eddies. J. Geophys. Res. Oceans, 118(12):6 543-6 560,
Kashino Y, España N, Syamsudin F, Richards K J, Jensen T, Dutrieux P, Ishida A. 2009. Observations of the North Equatorial Current, Mindanao Current, and the Kuroshio Current system during the 2006/07 El Niño and 2007/08
La Niña. J. Oceanogr., 65(3):325-333,
Kashino Y, Ishida A, Hosoda S. 2011. Observed ocean variability in the mindanao dome region. J. Phys.Oceanogr., 41(2):287-302,
Kashino Y, Ishida A, Kuroda Y. 2005. Variability of the Mindanao current:mooring observation results. Geophys.Res.Lett.,32(18),
Kashino Y, Ueki I, Sasaki H. 2015. Ocean variability east of Mindanao:mooring observations at 7·N, revisited. J.Geophys. Res. Oceans, 120(4):2 540-2 554.
Kashino Y, Watanabe H, Herunadi B, Aoyama M, Hartoyo D. 1999. Current variability at the Pacific entrance of the Indonesian throughflow. J. Geophys. Res. Oceans, 104(C5):11 021-11 035,
Li Y L, Han W Q, Wilkin J L, Zhang W G, Arango H, ZavalaGaray J, Levin J, Castruccio F S. 2014. Interannual variability of the surface summertime eastward jet in the South China Sea. J. Geophys. Res. Oceans, 119(10):7 205-7 228.
Li Y L, Wang F, Zhai F G. 2012. Interannual variations of subsurface spiciness in the Philippine Sea:observations and mechanism. J. Phys. Oceanogr., 42(6):1 022-1 038.
Li Y L, Wang F. 2012. Spreading and salinity change of North Pacific tropical water in the Philippine Sea. J. Oceanogr., 68(3):439-452.
Locarnini R A, Mishonov A V, Antonov J I, Boyer T P, Garcia H E, Baranova O K, Zweng M M, Paver C R, Reagan J R, Johnson D R, Hamilton M, Seidov D. 2013. World Ocean Atlas 2013, Volume 1:temperature. In:Levitus S ed.NOAA Atlas NESDIS 73. p.40.
Lukas R, Firing E, Hacker P, Richardson P L, Collins C A, Fine R, Gammon R. 1991. Observations of the Mindanao Current during the western equatorial Pacific Ocean circulation study. J. Geophys. Res. Oceans, 96(C4):7 089-7 104.
Lukas R, Yamagata T, McCreary J P. 1996. Pacific low-latitude western boundary currents and the Indonesian throughflow. J. Geophys. Res. Oceans, 101(C5):12 209-12 216.
Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T. 2004. A fifty-year eddy-resolving simulation of the world ocean-Preliminary outcomes of OFES (OGCM for the Earth simulator). J. Earth Sim., 1:35-56.
Nitani H. 1972. Beginning of the Kuroshio. In:Stommel H, Yoshida K eds. Kuroshio:Its Physical Aspects. University of Tokyo Press, Tokyo, Japan. p.129-163.
Qiu B, Chen S M, Rudnick D L, Kashino Y. 2015. A new paradigm for the North Pacific Subthermocline lowlatitude western boundary current system. J. Phys.Oceanogr., 45(9):2 407-2 423.
Qiu B, Chen S M. 2010. Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J. Phys. Oceanogr., 40(11):2 525-2 538.
Qiu B, Chen S M. 2012. Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J. Phys. Oceanogr., 42(1):193-206.
Qiu B, Joyce T M. 1992. Interannual variability in the mid-and low-latitude Western North Pacific. J. Phys. Oceanogr., 22(9):1 062-1 084.
Qiu B, Rudnick D L, Chen S M, Kashino Y. 2013. Quasistationary North Equatorial Undercurrent jets across the tropical North Pacific Ocean. Geophys. Res. Lett., 40(10):2 183-2 187,
Qu T D, Chiang T L, Wu C R, Dutrieux P, Hu D X. 2012.Mindanao Current/Undercurrent in an eddy-resolving GCM. J. Geophys. Res. Oceans, 117(C6):C06026,
Qu T D, Lindstrom E J. 2004. Northward intrusion of antarctic intermediate water in the western pacific. J. Phys.Oceanogr., 34(9):2 104-2 118.
Qu T D, Lukas R. 2003. The bifurcation of the North Equatorial Current in the Pacific. J. Phys. Oceanogr., 33(1):5-18,<0005:TB OTNE>2.0.CO;2.
Qu T D, Mitsudera H, Yamagata T. 1998. On the western boundary currents in the Philippine Sea. J. Geophys. Res.Oceans, 103(C4):7 537-7 548.
Qu T D, Mitsudera H, Yamagata T. 1999. A climatology of the circulation and water mass distribution near the Philippine coast. J. Phys. Oceanogr., 29(7):1 488-1 505.
Rio M H, Guinehut S, Larnicol G. 2011. New CNES-CLS09global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res. Oceans, 116(C7):C07018,
Sasaki H, Sasai Y, Kawahara S, Furuichi M, Araki F, Ishida A, Yamanaka Y, Masumoto Y, Sakuma H. 2004. A series of eddy-resolving ocean simulations in the world oceanOFES (OGCM for the Earth Simulator) project. In:OCEANS'04. MTTS/IEEE TECHNO-OCEAN'04. IEEE, 3:1 535-1 541.
Schönau M C, Rudnick D L, Cerovecki I, Gopalakrishnan G, Cornuelle B D, McClean J L, Qiu B. 2015. The Mindanao Current:mean structure and connectivity. Oceanography, 28(4):34-45.
Tomita T, Yasunari T. 1996. Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J. Meteor. Soc. Jpn., 74(4):399-413.
Toole J M, Millard R C, Wang Z, Pu S. 1990. Observations of the Pacific North Equatorial Current bifurcation at the Philippine coast. J. Phys. Oceanogr., 20(2):307-320.
Volkov D L, Larnicol G, Dorandeu J. 2007. Improving the quality of satellite altimetry data over continental shelves.J. Geophys. Res. Oceans, 112(C6):C06020,
Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection:how does ENSO affect East Asian climate? J. Climate, 13(9):1 517-1 536.
Wang F, Hu D X. 1998. Dynamic and thermohaline properties of the Mindanao undercurrent, part I. Dynamic structure.Chin. J. Oceanol. Limnol., 16(2):122-127.
Wang F, Hu D, Bai H. 1998. Western boundary undercurrents east of the Philippines. In:He M X, Chen G eds.Proceedings of PORSEC'98-Qingdao, 28-31 July. Ocean Remote Sens. Inst., Ocean Univ. of Qingdao, Qingdao, China. p.551-556.
Wang F, Song L N, Li Y L, Liu C Y, Wang J N, Lin P F, Yang G, Zhao J, Diao X Y, Zhang D X, Hu D X. 2016.Semiannually alternating exchange of intermediate waters east of the Philippines. Geophys. Res. Lett., 43(13):7 059-7 065,
Wang F, Zang N, Li Y L, Hu D X. 2015. On the subsurface countercurrents in the Philippine Sea. J. Geophys. Res.Oceans, 120(1):131-144.
Zhang L L, Hu D X, Hu S J, Wang F, Wang F J, Yuan D L. 2014. Mindanao Current/Undercurrent measured by a subsurface mooring. J. Geophys. Res. Oceans, 119(6):3 617-3 628.
Zhao J, Li Y L, Wang F. 2013. Dynamical responses of the west Pacific North equatorial countercurrent (NECC) system to El Niño Events. J. Geophys. Res. Oceans, 118(6):2 828-2 844,
Zweng M M, Reagan J R, Antonov J I, Locarnini R A, Mishonov A V, Boyer T P, Garcia H E, Baranova O K, Johnson D R, Seidov D, Biddle M M. 2013. World Ocean Atlas 2013, Vol.2:salinity. In:Levitus S ed. NOAA Atlas NESDIS 74. p.39.