Cite this paper:
LI Zhe, XIAO Yan, YANG Jixiang, LI Chao, GAO Xia, GUO Jinsong. Response of cellular stoichiometry and phosphorus storage of the cyanobacteria Aphanizomenon flos-aquae to smallscale turbulence[J]. HaiyangYuHuZhao, 2017, 35(6): 1409-1416

Response of cellular stoichiometry and phosphorus storage of the cyanobacteria Aphanizomenon flos-aquae to smallscale turbulence

LI Zhe1, XIAO Yan1, YANG Jixiang1, LI Chao2, GAO Xia1, GUO Jinsong1
1 CAS Key Laboratory on Reservoir Water Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China;
2 State Key Laboratory of Bioreactor Engineering, College of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
Turbulent mixing, in particular on a small scale, affects the growth of microalgae by changing diffusive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under different turbulent mixing conditions. Aphanizomenon flos-aquae were cultivated in different stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s3 to 0.050 58 m2/s3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory effect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum effective quantum yield of PSⅡ (the ratio of Fv/Fm) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the diffusive sublayer, regulating the nutrient flux of cells.
Key words:    Aphanizomenon flos-aquae|cellular stoichiometry|photosynthesis|polyphosphate|turbulent dissipation rate   
Received: 2016-06-28   Revised: 2016-08-23
PDF (356 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by LI Zhe
Articles by XIAO Yan
Articles by YANG Jixiang
Articles by LI Chao
Articles by GAO Xia
Articles by GUO Jinsong
Ayata S D, Lévy M, Aumont O, Resplandy L, Tagliabue A, Sciandra A, Bernard O. 2014. Phytoplankton plasticity drives large variability in carbon fixation efficiency.Geophys. Res. Lett., 41(24):8 994-9 000.
Dickman E M, Vanni M J, Horgan M J. 2006. Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia, 149(4):676-689.
Ebert U, Arrayás M, Temme N, Sommeijer B, Huisman J. 2001. Critical conditions for phytoplankton blooms. Bull.Math. Biol., 63(6):1 095-1 124.
Eixler S, Karsten U, Selig U. 2006. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia, 45(1):53-60.
Eixler S, Selig U, Karsten U. 2005. Extraction and detection methods for polyphosphate storage in autotrophic planktonic organisms. Hydrobiologia, 533(1-3):135-143.
Elliott J A. 2010. The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biol., 16(2):864-876.
Estrada M, Berdalet E. 1997. Phytoplankton in a turbulent world. Scientia Marina, 61(S1):125-140.
Gallardo Rodríguez J J, Sánchez Mirón A, García Camacho F, Cerón García M C, Belarbi E H, Chisti Y, Molina Grima E. 2009. Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnology Progress, 25(3):792-800.
Guillard R R L. 1973. Division rates. In:Stein J R ed.Handbook of Phycological Methods. I. Culture Methods and Growth Measurements. Cambridge University Press, Cambridge. p.289-312.
Halsey K H, Jones B M. 2015. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci., 7(1):265-297.
Halsey K H, Milligan A J, Behrenfeld M J. 2014. Contrasting strategies of photosynthetic energy utilization drive lifestyle strategies in ecologically important picoeukaryotes. Metabolites, 4(2):260-280.
Hondzo M, Lyn D. 1999. Quantified small-scale turbulence inhibits the growth of a green alga. Freshwater Biology, 41(1):51-61.
Hondzo M, Wüest A. 2009. Do Microscopic organisms feel turbulent flows? Environ. Sci. Technol., 43(3):764-768.
Huisman J, Arrayás M, Ebert U, Sommeijer B. 2002. How do sinking phytoplankton species manage to persist? Am.Nat., 159(3):245-254.
Karp-Boss L, Boss E, Jumars P A. 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion.Oceanogr. Mar. Biol. Annu. Rev, 34:71-107.
Klausmeier C A, Litchman E, Daufresne T, Levin S A. 2008.Phytoplankton stoichiometry. Ecol. Res., 23(3):479-485.
Leupold M, Hindersin S, Gust G, Kerner M, Hanelt D. 2013.Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii.J. Appl. Phycol., 25(2):485-495.
Litchman E, Klausmeier C A. 2008. Trait-based community ecology of phytoplankton. Ann. Rev. Ecol. Evol. Syst., 39(1):615-639.
Maxwell K, Johnson G N. 2000. Chlorophyll fluorescence-a practical guide. J. Exp. Bot., 51(345):659-668.
Michels M H A, van der Goot A J, Norsker N H, Wijffels R H. 2010. Effects of shear stress on the microalgae Chaetoceros muelleri. Bioproc. Biosyst. Eng., 33(8):921-927.
Montechiaro F, Giordano M. 2010. Compositional homeostasis of the dinoflagellate Protoceratium reticulatum grown at three different pCO2. J. Plant Physiol., 167(2):110-113.
O'Halloran I P, Cade-Menun B J. 2008. Total and organic phosphorus. In:Carter M R, Gregorich E G eds. Soil Sampling and Methods of Analysis. 2nd edn. CRC Press, Boca Raton.
Padisák J, Köhler J, Hoeg S. 1999. Effect of changing flushing rates on development of late summer Aphanizomenon and Microcystis populations in a shallow lake, Müggelsee, Berlin, Germany. In:Tundisi J G, Straškraba M eds.Theoretical Reservoir Ecology and Its Applications.Backhuys Publishers, Leiden. p.411-424.
Parkinson J A, Allen S E. 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal., 6(1):1-11.
Powell N, Shilton A N, Pratt S, Chisti Y. 2008. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ. Sci. Technol., 42(16):5 958-5 962.
Powell N, Shilton A, Chisti Y, Pratt S. 2009. Towards a luxury uptake process via microalgae-defining the polyphosphate dynamics. Water Res., 43(17):4 207-4 213.
Reynolds C S. 2006. The Ecology of Phytoplankton.Cambridge University Press, Cambridge.
Rothschild B J, Osborn T R. 1988. Small-scale turbulence and plankton contact rates. J. Plankton Res., 10(3):465-474.
Sterner R W, Elser J J. 2002. Ecological Stoichiometry:The Biology of Elements from Molecules to the Biosphere.Princeton University Press, Princeton.
Thomas W H, Gibson C H. 1990. Effects of small-scale turbulence on microalgae. J. Appl. Phycol., 2(1):71-77.
Thomas W H, Vernet M, Gibson C H. 1995. Effects of smallscale turbulence on photosynthesis, pigmentation, cell division, and cell size in the marine dinoflagellate Gomaulax polyedra (Dinophyceae). J. Phycol., 31(1):50-59.
Tripathi K, Sharma N K, Kageyama H, Takabe T, Rai A K. 2013. Physiological, biochemical and molecular responses of the halophilic cyanobacterium Aphanothece halophytica to Pi-deficiency. Eur. J. Phycol., 48(4):461-473.
Warnaars T A, Hondzo M. 2006. Small-scale fluid motion mediates growth and nutrient uptake of Selenastrum capricornutum. Freshwater Biology, 51(6):999-1 015.
Wintermans J F G M, De Mots A. 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta(BBA)-Biophysics including Photosynthesis, 109(2):448-453.