Cite this paper:
HUANG Ronglian, LI Li, ZHANG Guofan. Structure-based function prediction of the expanding mollusk tyrosinase family[J]. HaiyangYuHuZhao, 2017, 35(6): 1454-1464

Structure-based function prediction of the expanding mollusk tyrosinase family

HUANG Ronglian1,2,4, LI Li1,3, ZHANG Guofan1,3
1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China;
4 Marine Pearl Culture Lab, Fishery College, GuangDong Ocean University, Zhanjiang 524088, China
Abstract:
Tyrosinase (Ty) is a common enzyme found in many different animal groups. In our previous study, genome sequencing revealed that the Ty family is expanded in the Pacific oyster (Crassostrea gigas). Here, we examine the larger number of Ty family members in the Pacific oyster by high-level structure prediction to obtain more information about their function and evolution, especially the unknown role in biomineralization. We verified 12 Ty gene sequences from Crassostrea gigas genome and Pinctada fucata martensii transcriptome. By using phylogenetic analysis of these Tys with functionally known Tys from other molluscan species, eight subgroups were identified (CgTy_s1, CgTy_s2, MolTy_s1, MolTy-s2, MolTy-s3, PinTy-s1, PinTy-s2 and PviTy). Structural data and surface pockets of the dinuclear copper center in the eight subgroups of molluscan Ty were obtained using the latest versions of prediction online servers. Structural comparison with other Ty proteins from the protein databank revealed functionally important residues (HA1, HA2, HA3, HB1, HB2, HB3, Z1-Z9) and their location within these protein structures. The structural and chemical features of these pockets which may related to the substrate binding showed considerable variability among mollusks, which undoubtedly defines Ty substrate binding. Finally, we discuss the potential driving forces of Ty family evolution in mollusks. Based on these observations, we conclude that the Ty family has rapidly evolved as a consequence of substrate adaptation in mollusks.
Key words:    tyrosinase|mollusk|ligand binding pocket|substrate diversity|evolution   
Received: 2016-03-11   Revised: 2016-07-25
Tools
PDF (3405 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by HUANG Ronglian
Articles by LI Li
Articles by ZHANG Guofan
References:
Aguilera F, McDougall C, Degnan B M. 2013. Origin, evolution and classification of type-3 copper proteins:lineage-specific gene expansions and losses across the Metazoa. BMC Evolutionary Biology, 13(1):1-12.
Aguilera F, McDougall C, Degnan B M. 2014. Evolution of the tyrosinase gene family in bivalve molluscs:independent expansion of the mantle gene repertoire. Acta Biomaterialia, 10(9):3 855-3 865.
Andersen S O. 2010. Insect cuticular sclerotization:a review.Insect Biochemistry and Molecular Biology, 40(3):166-178.
Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace:a web-based environment for protein structure homology modelling. Bioinformatics, 22(2):195-201.
Baker D, Sali A. 2001. Protein structure prediction and structural genomics. Science, 294(5540):93-96.
Breslauer D N, Kaplan D L. 2012. Silks:properties and uses of natural and designed variants. Biopolymers, 97(6):319-321.
Cuff M E, Miller K I, van Holde K E, Hendrickson W A. 1998.Crystal structure of a functional unit from Octopus hemocyanin. Journal of Molecular Biology, 278(4):855-870.
Decker H, Schweikardt T, Tuczek F. 2006. The first crystal structure of tyrosinase:all questions answered.Angewandte Chemie International Edition, 45(28):4 546-4 550.
Decker H, Tuczek F. 2000. Tyrosinase/catecholoxidase activity of hemocyanins:structural basis and molecular mechanism. Trends in Biochemical Sciences, 25(8):392-397.
Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. 2006. CASTp:computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34(S2):W116-W118.
Freddi G, Anghileri A, Sampaio S, Buchert J, Monti P, Taddei P. 2006. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin:grafting of chitosan under heterogeneous reaction conditions. Journal of Biotechnology, 125(2):281-294.
Fujieda N, Ikeda T, Murata M, Yanagisawa S, Aono S, Ohkubo K, Nagao S, Ogura T, Hirota S, Fukuzumi S, Nakamura Y, Hata Y, Itoh S. 2011. Post-translational His-Cys crosslinkage formation in tyrosinase induced by copper(Ⅱ)-peroxo species. Journal of the American Chemical Society, 133(5):1 180-1 183.
Gherardini P F, Helmer-Citterich M. 2008. Structure-based function prediction:approaches and applications.Briefings in Functional Genomics and Proteomics, 7(4):291-302.
Gillespie J P, Kanost M R, Trenczek T. 1997. Biological mediators of insect immunity. Annual Review of Entomology, 42(1):611-643.
Goldfeder M, Kanteev M, Adir N, Fishman A. 2013.Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Biochimica et Biophysica Acta, 1834(3):629-633.
Guerette P A, Hoon S, Seow Y, Raida M, Masic A, Wong F T, Ho V H B, Kong K W, Demirel M C, Pena-Francesch A, Amini S, Tay G Z, Ding D W, Miserez A. 2013.Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science. Nature Biotechnology, 31(10):908-915.
Hinman M B, Lewis R V. 1992. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. The Journal of Biological Chemistry, 267(27):19 320-19 324.
Holm L, Sander C. 1995. Dali:a network tool for protein structure comparison. Trends in Biochemical Sciences, 20(11):478-480.
Hooft R W W, Sander C, Vriend G. 1997. Objectively judging the quality of a protein structure from a Ramachandran plot. Computer Applications in the Biosciences, 13(4):425-430.
Hooft R W W, Vriend G, Sander C, Abola E E. 1996. Errors in protein structures. Nature, 381(6580):272.
Källberg M, Wang H P, Wang S, Peng J, Wang Z Y, Lu H, Xu J B. 2012. Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8):1 511-1 522.
Kamaraj B, Purohit R. 2013a. Mutational analysis of TYR gene and its structural consequences in OCA1A. Gene, 513(1):184-195.
Kamaraj B, Purohit R. 2013b. In silico screening and molecular dynamics simulation of disease-associated nsSNP in TYRP1 gene and its structural consequences in OCA3.BioMed Research International, 2013:697051.
Kamaraj B, Purohit R. 2014a. Computational screening of disease-associated mutations in OCA2 gene. Cell Biochemistry and Biophysics, 68(1):97-109.
Kamaraj B, Purohit R. 2014b. Mutational analysis of oculocutaneous albinism:a compact review. BioMed Research International, 2014:905472.
Kamaraj B, Purohit R. 2016. Mutational analysis on membrane associated transporter protein (MATP) and their structural consequences in oculocutaeous albinism type 4 (OCA4)-a molecular dynamics approach. Journal of Cellular Biochemistry, 117(11):2 608-2 619.
Kanteev M, Goldfeder M, Chojnacki M, Adir N, Fishman A. 2013. The mechanism of copper uptake by tyrosinase from Bacillus megaterium. JBIC Journal of Biological Inorganic Chemistry, 18(8):895-903.
Kelley L A, Mezulis S, Yates C M, Wass M N, Sternberg M J E. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6):845-858.
Kelley L A, Sternberg M J. 2009. Protein structure prediction on the Web:a case study using the Phyre server. Nature Protocols, 4(3):363-371.
Klabunde T, Eicken C, Sacchettini J C, Krebs B. 1998. Crystal structure of a plant catechol oxidase containing a dicopper center. Nature Structural Biology, 5(12):1 084-1 090.
Lai-Fook J. 1966. The repair of wounds in the integument of insects. Journal of Insect Physiology, 12(2):195-226.
Laskowski R A, MacArthur M W, Moss D S, Thornton J M. 1993. PROCHECK:a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2):283-291.
Lobley A, Sadowski M I, Jones D T. 2009. pGenTHREADER and pDomTHREADER:new methods for improved protein fold recognition and superfamily discrimination.Bioinformatics, 25(14):1 761-1 767.
Lovell S C, Davis I W, Arendall Ⅲ W B, de Bakker P I W, Word J M, Prisant M G, Richardson J S, Richardson D C. 2003. Structure validation by Cα geometry:φ, ψ and Cβ deviation. Proteins, 50(3):437-450.
Luna-Acosta A, Saulnier D, Pommier M, Haffner P, de Decker S, Renault T, Thomas-Guyon H. 2011. First evidence of a potential antibacterial activity involving a laccase-type enzyme of the phenoloxidase system in Pacific oyster Crassostrea gigas haemocytes. Fish & Shellfish Immunology, 31(6):795-800.
Mann K, Edsinger-Gonzales E, Mann M. 2012. In-depth proteomic analysis of a mollusc shell:acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea.Proteome Science, 10(1):28.
Marie B, Joubert C, Tayalé A, Zanella-Cléon I, Belliard C, Piquemal D, Cochennec-Laureau N, Marin F, Gueguen Y, Montagnani C. 2012. Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proceedings of the National Academy of Sciences of the United States of America, 109(51):20 986-20 991.
Mason T J, Matthews M. 2012. Aquatic environment, housing, and management in the eighth edition of the Guide for the Care and Use of Laboratory Animals:additional considerations and recommendations. Journal of the American Association for Laboratory Animal Science, 51(3):329-332.
Masuda T, Momoji K, Hirata T, Mikami B. 2014. The crystal structure of a crustacean prophenoloxidase provides a clue to understanding the functionality of the type 3 copper proteins. The FEBS Journal, 281(11):2 659-2 673.
Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M. 2006. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. The Journal of Biological Chemistry, 281(13):8 981-8 990.
McDougall C, Aguilera F, Degnan B M. 2013. Rapid evolution of pearl oyster shell matrix proteins with repetitive, lowcomplexity domains. Journal of the Royal Society Interface, 10(82):20130041.
Nagai K, Yano M, Morimoto K, Miyamoto H. 2007. Tyrosinase localization in mollusc shells. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 146(2):207-214.
Naraoka T, Uchisawa H, Mori H, Matsue H, Chiba S, Kimura A. 2003. Purification, Characterization and molecular cloning of tyrosinase from the cephalopod mollusk, Illex argentinus. European Journal of Biochemistry, 270(19):4 026-4 038.
Partlow B P, Hanna C W, Rnjak-Kovacina J, Moreau J E, Applegate M B, Burke K A, Marelli B, Mitropoulos A N, Omenetto F G, Kaplan D L. 2014. Highly tunable elastomeric silk biomaterials. Advanced Functional Materials, 24(29):4 615-4 624.
Perbandt M, Guthöhrlein E W, Rypniewski W, Idakieva K, Stoeva S, Voelter W, Genov N, Betzel C. 2003. The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity.Biochemistry, 42(21):6 341-6 346.
Pho L N, Leachman S A. 2010. Genetics of pigmentation and melanoma predisposition. Giornale italiano di Dermatologia e Venereologia, 145(1):37-45.
Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, DiMaio F, Lange O, Kinch L, Sheffler W, Kim B H, Das R, Grishin N V, Baker D. 2009. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins, 77(S9):89-99.
Roy A, Kucukural A, Zhang Y. 2010. I-TASSER:a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4):725-738.
Samata T, Hayashi N, Kono M, Hasegawa K, Horita C, Akera S. 1999. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Letters, 462(1-2):225-229.
Sendovski M, Kanteev M, Ben-Yosef V S, Adir N, Fishman A. 2011. First structures of an active bacterial tyrosinase reveal copper plasticity. Journal of Molecular Biology, 405(1):227-237.
Shen X, Belcher A M, Hansma P K, Stucky G D, Morse D E. 1997. Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem., 272(51):32 472-32 481.
Shuster Ben-Yosef V, Sendovski M, Fishman A. 2010. Directed evolution of tyrosinase for enhanced monophenolase/diphenolase activity ratio. Enzyme and Microbial Technology, 47(7):372-376.
Slominski A, Tobin D J, Shibahara S, Wortsman J. 2004.Melanin pigmentation in mammalian skin and its hormonal regulation. Physiological Reviews, 84(4):1 155-1 228.
Smith B L, Schäffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E, Hansma P K. 1999. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 399(6738):761-763.
Söding J. 2005. Protein homology detection by HMM-HMM comparison. Bioinformatics, 21(7):951-960.
Solomon E I, Heppner D E, Johnston E M, Ginsbach J W, Cirera J, Qayyum M, Kieber-Emmons M T, Kjaergaard C H, Hadt R G, Tian L. 2014. Copper active sites in biology.Chemical Reviews, 114(7):3 659-3 853.
Suhre M H, Gertz M, Steegborn C, Scheibel T. 2014. Structural and functional features of a collagen-binding matrix protein from the mussel byssus. Nature Communications, 5(5):3 392-3 392.
Takgi R, Miyashita T. 2013. A cDNA cloning of a novel alphaclass tyrosinase of Pinctada fucata:its expression analysis and characterization of the expressed protein. Enzyme Research, 2014(2):78 0549-78 0549.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013.MEGA6:molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12):2 725-2 729.
True J R. 2003. Insect melanism:the molecules matter. Trends in Ecology & Evolution, 18(12):640-647.
Yan F, Luo S J, Jiao Y, Deng Y W, Du X D, Huang R L, Wang Q H, Chen W Y. 2014. Molecular characterization of the BMP7 gene and its potential role in shell formation in Pinctada martensii. International Journal of Molecular Sciences, 15(11):21 215-21 228.
Yano M, Nagai K, Morimoto K, Miyamoto H. 2006. Shematrin:a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 144(2):254-262.
Yu J, Wei W, Danner E, Ashley R K, Israelachvili J N, Waite J H. 2011. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nature Chemical Biology, 7(9):588-590.
Zhang C, Xie L P, Huang J, Chen L, Zhang R Q. 2006. A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). Biochemical and Biophysical Research Communications, 342(2):632-639.
Zhang G F, Fang X D, Guo X M et al. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490(7418):49-54.
Zhao X X, Wang Q H, Jiao Y, Huang R L, Deng Y W, Wang H, Du X D. 2012. Identification of genes potentially related to biomineralization and immunity by transcriptome analysis of Pearl Sac in Pearl Oyster Pinctada martensii.Marine Biotechnology, 14(6):730-739.
Zhou Z, Ni D J, Wang M Q, Wang L L, Shi X W, Yue F, Liu R, Song L S. 2012. The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri. Fish & Shellfish Immunology, 33(2):375-381.