Cite this paper:
ZHANG Xiaolin, LI Nan, QIN Ting, HUANG Bei, NIE Pin. Involvement of two glycoside hydrolase family 19 members in colony morphotype and virulence in Flavobacterium columnare[J]. HaiyangYuHuZhao, 2017, 35(6): 1511-1523

Involvement of two glycoside hydrolase family 19 members in colony morphotype and virulence in Flavobacterium columnare

ZHANG Xiaolin1,2, LI Nan1, QIN Ting1, HUANG Bei3, NIE Pin1
1 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Fisheries, Jimei University, Xiamen 361021, China
Flavobacterium columnare is the pathogenic agent of columnaris disease in aquaculture. Using a recently developed gene deletion strategy, two genes that encode the Glyco_hydro_19 domain (GH19 domain) containing proteins, ghd-1 and ghd-2, were deleted separately and together from the F. columnare G4 wild type strain. Surprisingly, the single-, △ghd-1 and △ghd-2, and double-gene mutants, △ghd-1 △ghd-2, all had rhizoid and non-rhizoid colony morphotypes, which we named △ghd-1, △ghd-2, △ghd-1 △ghd-2, and N△ghd-1, N△ghd-2, and N△ghd-1 △ghd-2. However, chitin utilization was not detected in either these mutants or in the wild type. Instead, skimmed milk degradation was observed for the mutants and the wild type; the non-rhizoid strain N△ghd-2 exhibited higher degradation activity as revealed by the larger transparent circle on the skimmed milk plate. Using zebrafish as the model organism, we found that non-rhizoid mutants had higher LD50 values and were less virulent because zebrafish infected with these survived longer. Transcriptome analysis between the non-rhizoid and rhizoid colony morphotypes of each mutant, i.e., N△ghd-1 versus (vs) △ghd-1, N△ghd-2 vs △ghd-2, and N△ghd-1 △ghd-2 vs △ghd-1 △ghd-2, revealed a large number of differentially expressed genes, among which 39 genes were common in three of the pairs compared. Although most of these genes encode hypothetical proteins, a few molecules such as phage tail protein, rhs element Vgr protein, thiol-activated cytolysin, and TonB-dependent outer membrane receptor precursor, expression of which was down-regulated in non-rhizoid mutants but up-regulated in rhizoid mutants, may play a role F. columnare virulence.
Key words:    Flavobacterium columnare|GH19 domain|gene deletion|rhizoid colony|non-rhizoid colony   
Received: 2016-06-03   Revised: 2016-07-14
PDF (924 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by ZHANG Xiaolin
Articles by LI Nan
Articles by QIN Ting
Articles by HUANG Bei
Articles by NIE Pin
Alvarez B, Secades P, McBride M J, Guijarro J A. 2004.Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl.Environ. Microbiol., 70(1):581-587.
Beck B H, Li C, Farmer B D, Barnett L M, Lange M D, Peatman E. 2015. A comparison of high-and lowvirulence Flavobacterium columnare strains reveals differences in iron acquisition components and responses to iron restriction. J. Fish Dis., 39(3):259-268.
Beier S, Bertilsson S. 2013. Bacterial chitin degradationmechanisms and ecophysiological strategies. Front.Microbiol., 4:149,
Bernardet J F. 1989. ‘Flexibacter columnaris’:first description in France and comparison with bacterial strains from other origins. Dis. Aquat. Org., 6:37-44.
Chaudhuri S, Gantner B N, Ye R D, Cianciotto N P, Freitag N E. 2013. The Listeria monocytogenes ChiA chitinase enhances virulence through suppression of host innate immunity. mBio, 4(2):e00617-12.
Dabo S M, Confer A W, Quijano-Blas R A. 2003. Molecular and immunological characterization of Pasteurella multocida serotype A:3 OmpA:evidence of its role in P.multocida interaction with extracellular matrix molecules.Microb. Pathog., 35(4):147-157.
Declercq A M, Haesebrouck F, van den Broeck W, Bossier P, Decostere A. 2013. Columnaris disease in fish:a review with emphasis on bacterium-host interactions. Vet. Res., 44:27.
Decostere A, Haesebrouck F, van Driessche E, Charlier G, Ducatelle R. 1999. Characterization of the adhesion ofFlavobacterium columnare (Flexibacter columnaris) to gill tissue. J. Fish Dis., 22(6):465-474.
Dong H T, Senapin S, LaFrentz B, Rodkhum C. 2015.Virulence assay of rhizoid and non-rhizoid morphotypes of Flavobacterium columnare in red tilapia, Oreochromis sp., fry. J. Fish Dis., 39(6):649-655.
Duchaud E, Boussaha M, Loux V, Bernardet J F, Michel C, Kerouault B, Mondot S, Nicolas P, Bossy R, Caron C, Bessières P, Gibrat J F, Claverol S, Dumetz F, Le Hénaff M, Benmansour A. 2007. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat.Biotechnol., 25(7):763-769.
Dumetz F, Duchaud E, Claverol S, Orieux N, Papillon S, Lapaillerie D, Le Hénaff M. 2008. Analysis of the Flavobacterium psychrophilum outer-membrane subproteome and identification of new antigenic targets for vaccine by immunomics. Microbiology, 154(6):1 793-1 801.
Edwards R A, Keller L H, Schifferli D M. 1998. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene, 207(2):149-157.
Fujita K, Shimomura K, Yamamoto K, Yamashita T, Suzuki K. 2006. A chitinase structurally related to the glycoside hydrolase family 48 is indispensable for the hormonally induced diapause termination in a beetle. Biochem.Biophys. Res. Commun., 345(1):502-507.
Gay P, Le Coq D, Steinmetz M, Ferrari E, Hoch J A. 1983.Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis:expression of the gene in Escherichia coli. J. Bacteriol., 153(3):1 424-1 431.
Gooday G W. 1990. Physiology of microbial degradation of chitin and chitosan. In:Ratledge C ed. Biochemistry of Microbial Degradation. Springer, Dordrecht, Netherlands.p.279-312.
Hackman R H. 1962. Studies on chitin V. The action of mineral acids on chitin. Aust. J. Biol. Sci., 15(3):526-537.
Hoell I A, Vaaje-Kolstad G, Eijsink V G H. 2010. Structure and function of enzymes acting on chitin and chitosan.Biotechnol. Genet. Eng. Rev., 27(1):331-366.
Kesari P, Patil D N, Kumar P, Tomar S, Sharma A K, Kumar P. 2015. Structural and functional evolution of chitinase-like proteins from plants. Proteomics, 15(10):1 693-1 705.
Kharade S S, McBride M J. 2014. Flavobacterium johnsoniae chitinase ChiA is required for chitin utilization and is secreted by the type IX secretion system. J. Bacteriol., 196(5):961-970.
Koskiniemi S, Lamoureux J G, Nikolakakis K C, t'Kint de Roodenbeke C, Kaplan M D, Low D A, Hayes C S. 2013.Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl. Acad. Sci. U. S. A., 110(17):7 032-7 037.
Kubota T, Miyamoto K, Yasuda M, Inamori Y, Tsujibo H. 2004. Molecular characterization of an intracellular β-Nacetylglucosaminidase involved in the chitin degradation system of Streptomyces thermoviolaceus OPC-520.Biosci. Biotechnol. Biochem., 68(6):1 306-1 314.
Kumari S, Rath P K. 2014. Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales.Procedia Mater. Sci., 6:482-489.
Kunttu H M T, Jokinen E I, Valtonen E T, Sundberg L R. 2011.Virulent and nonvirulent Flavobacterium columnare colony morphologies:characterization of chondroitin AC lyase activity and adhesion to polystyrene. J. Appl.Microbiol., 111(6):1 319-1 326.
Kunttu H M T, Suomalainen L R, Jokinen E I, Valtonen E T. 2009. Flavobacterium columnare colony types:connection to adhesion and virulence? Microb. Pathog., 46(1):21-27.
Laanto E, Penttinen R K, Bamford J K H, Sundberg L R. 2014.Comparing the different morphotypes of a fish pathogen-implications for key virulence factors in Flavobacterium columnare. BMC Microbiol., 14:170.
Li N, Qin T, Zhang X L, Huang B, Liu Z X, Xie H X, Zhang J, McBride M J, Nie P. 2015. Gene deletion strategy to examine the involvement of the two chondroitin Lyases in Flavobacterium columnare virulence. Appl. Environ.Microbiol., 81(21):7 394-7 402.
Lu Q Z, Ni D S, Ge R F. 1975. Studies on the gill diseases of the grass carp (Ctenopharyngodon idelluls) Ⅰ. Isolation of a myxobacterial pathogen. Acta Hydrobiol. Sin., 5(3):315-334. (in Chinese with English abstract)
McBride M J, Kempf M J. 1996. Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J. Bacteriol., 178(3):583-590.
McBride M J, Nakane D. 2015. Flavobacterium gliding motility and the type IX secretion system. Curr. Opin.Microbiol., 28:72-77.
McBride M J, Zhu Y T. 2013. Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J. Bacteriol., 195(2):270-278.
McBride M J. 2001. Bacterial gliding motility:multiple mechanisms for cell movement over surfaces. Annu. Rev.Microbiol., 55:49-75.
Michel E, Reich K A, Favier R, Berche P, Cossart P. 1990.Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol. Microbiol., 4(12):2 167-2 178.
Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods., 5(7):621-628.
Murthy N, Bleakley B. 2012. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Internet. J. Microbiol., 10(2):14 186.
Pauer H, Cavalcanti S N V, Teixeira F L, Santos-Filho J, Vommaro R C, Oliveira A C S C, Ferreira E O, Domingues R R M C P. 2013. Inactivation of a fibronectin-binding TonB-dependent protein increases adhesion properties of Bacteroides fragilis. J. Med. Microbiol., 62(10):1 524-1 530.
Pukatzki S, Ma A T, Revel A T, Sturtevant D, Mekalanos J J. 2007. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl. Acad. Sci. U. S. A., 104(39):15 508-15 513.
Reed L J, Muench H. 1938. A simple method of estimating fifty per cent endpoints. Am. J. Hyg., 27(3):493-497.
Rhodes R G, Nelson S S, Pochiraju S, McBride M J. 2011.Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J. Bacteriol., 193(3):599-610.
Rinaudo M. 2006. Chitin and chitosan:properties and applications. Prog. Polym. Sci., 31(7):603-632.
Shieh H S. 1980. Studies on the nutrition of a fish pathogen, Flexibacter columnaris. Microbios Lett., 13:129-133.
Smith S G J, Mahon V, Lambert M A, Fagan R P. 2007. A molecular Swiss army knife:OmpA structure, function and expression. FEMS Microbiol. Lett., 273(1):1-11.
Staats C C, Kmetzsch L, Lubeck I, Junges A, Vainstein M H, Schrank A. 2013. Metarhizium anisopliae chitinase CHIT30 is involved in heat-shock stress and contributes to virulence against Dysdercus peruvianus. Fungal Biol., 117(2):137-144.
Stringer-Roth K M, Yunghans W, Caslake L F. 2002.Differences in chondroitin AC lyase activity of Flavobacterium columnare isolates. J. Fish Dis., 25(11):687-691.
Štrojsová M, Vrba J. 2005. Direct detection of digestive enzymes in planktonic rotifers using enzyme-labelled fluorescence (ELF). Mar. Freshwater Res., 56(2):189-195.
Suomalainen L R, Tiirola M, Valtonen E T. 2006. Chondroitin AC lyase activity is related to virulence of fish pathogenic Flavobacterium columnare. J. Fish Dis., 29(12):757-763.
Tekedar H C, Karsi A, Gillaspy A F, Dyer D W, Benton N R, Zaitshik J, Vamenta S, Banes M M, Gülsoy N, AbokoCole M, Waldbieser G C, Lawrence M L. 2012. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512. J. Bacteriol., 194(10):2 763-2 764.
Vrba J, Šimek K, Pernthaler J, Psenner R. 1996. Evaluation of extracellular, high-affinity β-N-acetylglucosaminidase measurements from freshwater lakes:an enzyme assay to estimate protistan grazing on bacteria and picocyanobacteria. Microb. Ecol., 32(1):81-97.
Xie H X, Nie P, Chang M X, Liu Y, Yao W J. 2005. Gene cloning and functional analysis of glycosaminoglycandegrading enzyme chondroitin AC lyase from Flavobacterium columnare G4. Arch. Microbiol., 184(1):49-55.
Xie H X, Nie P, Sun B J. 2004. Characterization of two membrane-associated protease genes obtained from screening out-membrane protein genes of Flavobacterium columnare G4. J. Fish Dis., 27(12):719-729.
Youderian P, Hartzell P L. 2007. Triple mutants uncover three new genes required for social motility in Myxococcus xanthus. Genetics, 177(1):557-566.