Cite this paper:
YUAN Dongliang, HU Xiaoyue, XU Peng, ZHAO Xia, Yukio MASUMOTO, HAN Weiqing. The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean:dynamics and long-term trends under global warming[J]. Journal of Oceanology and Limnology, 2018, 36(1): 4-19

The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean:dynamics and long-term trends under global warming

YUAN Dongliang1,2,3, HU Xiaoyue1,2, XU Peng1,2, ZHAO Xia1, Yukio MASUMOTO4, HAN Weiqing5
1 Key Laboratory of Ocean Circulation and Waves(KLOCW), and Institute of Oceanology, Chinese Academy of Sciences, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao 266071, China;
4 University of Tokyo, Tokyo, Japan;
5 Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USA
The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.
Key words:    Indian Ocean Dipole (IOD)|El Niño-Southern Oscillation (ENSO)|oceanic channel|Indonesian Throughflow|ENSO predictability   
Received: 2016-09-19   Revised: 2016-11-30
PDF (4450 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by YUAN Dongliang
Articles by HU Xiaoyue
Articles by XU Peng
Articles by ZHAO Xia
Articles by Yukio MASUMOTO
Articles by HAN Weiqing
Alexander M A, Bladé I, Newman M, Lanzante J R, Lau N C, Scot J D. 2002. The atmospheric bridge:the influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15(16):2 205-2 231.
Annamalai H, Xie S P, McCreary J P, Murtugudde R. 2005. Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18(2):302-319.
Behera S K, Luo J J, Masson S, Rao S A, Sakuma H, Yamagata T. 2006. A CGCM study on the interaction between IOD and ENSO. J. Climate, 19(9):1 688-1 705.
Behera S K, Yamagata T. 2003. Influence of the Indian Ocean dipole on the southern oscillation. J. Meteor. Soc. Jpn., 81(1):169-177.
Bleck R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4(1):55-88.
Clarke A J, Gorder S V. 2003. Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett., 30(7):1 399,
Drushka K, Sprintall J, Gille S T, Brodjonegoro I. 2010. Vertical structure of kelvin waves in the Indonesian throughflow exit passages. J. Phys. Oceanogr., 40(9):1 965-1 987.
Halliwell G, Bleck R, Chassignet E. 1998. Atlantic Ocean simulations performed using a new hybrid-coordinate ocean model. In EOS Transactions, American Geophysical Union (AGU), Fall 1998 Meeting, San Francisco, CA.
Izumo T, Lengaigne M, Vialard J, Luo J J, Yamagata T, Madec G. 2014. Influence of Indian Ocean dipole and pacific recharge on following year's El Niño:interdecadal robustness. Climate Dyn., 42(1-2):291-310.
Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera S K, Luo J J, Cravatte S, Masson S, Yamagata T. 2010. Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nat. Geosci., 3(3):168-172.
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc., 77(3):437-471.
Kaplan A, Cane M A, Kushnir Y, Clement A C, Blumenthal M B, Rajagopalan B. 1998. Analyses of global sea surface temperature 1856-1991. J. Geophy. Res., 103(C9):18 567-18 589.
Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO:evidence for a tropical atmospheric bridge. J. Climate, 12(4):917-932.
Kug J S, Li T, An S I, Kang I S, Luo J J, Masson S, Yamagata T. 2006. Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33(9):L09710,
Lau N C, Leetmaa A, Nath M J, Wang H L. 2005. Influences of ENSO-induced Indo-western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18(15):2 922-2 942.
Lau N C, Nath M J. 2003. Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16(1):3-20.
Luo J J, Zhang R C, Behera S K, Masumoto Y, Jin F F, Lukas R, Yamagata T. 2010. Interaction between El Niño and Extreme Indian Ocean Dipole. J. Climate, 23(3):726-742.
Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T. 2004. A fifty-year eddy-resolving simulation of the world ocean-preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simulator, 1:35-56.
McCreary Jr J P. 1984. Equatorial beams. J. Mar. Res., 42(2):395-430.
Meehl G A, Bony S. 2011. Introduction to CMIP5. Clivar Exchanges, 16(2):4-5.
Molcard R, Fieux M, Syamsudin F. 2001. The throughflow within Ombai Strait. Deep Sea Res. Part I Oceanogr. Res. Papers, 48(5):1 237-1 253.
Moore D W, McCreary J P. 1990. Excitation of intermediatefrequency equatorial waves at a western ocean boundary:with application to observations from the Indian Ocean. J. Geophys. Res., 95(C4):5 219-5 231.
Pujiana K, Gordon A L, Sprintall J, Susanto R D. 2009. Intraseasonal variability in the Makassar strait thermocline. J. Mar. Res., 67(6):757-777.
Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14):4 407,
Saji N H, Goswami B N, Vinayachandran P N, Yamagata T. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401(6751):360-363.
Slutz R J, Lubker S J, Hiscox J D, Woodruff S D, Jenne R L, Joseph D H, Steurer P M, Elms J D. 1985. Comprehensive Ocean-Atmosphere Data Set:Release 1. NOAA Environmental Research Laboratories, Climate Research Program, Boulder, Colorado. 268p.
Smith T M, Reynolds R W, Peterson T C, Lawrimore J. 2008. Improvements to NOAA's historical merged Land-Ocean surface temperature analysis (1880-2006). J. Climate, 21(10):2 283-2 296.
Susanto R D, Ffield A, Gordon A L, Adi T R. 2012. Variability of Indonesian throughflow within Makassar Strait, 2004-2009. J. Geophys. Res., 117(C9):C09013,
Trenary L L, Han W Q. 2012. Intraseasonal-to-interannual variability of South Indian Ocean sea level and thermocline:remote versus local forcing. J. Phys. Oceanogr., 42(4):602-627.
Trenary L L, Han W Q. 2013. Local and remote forcing of decadal sea level and thermocline depth variability in the south Indian Ocean. J. Geophys. Res., 118(1):381-398,
White W B. 1995. Design of a global observing system for gyre-scale upper ocean temperature variability. Prog. Oceanogr., 36(3):169-217.
Wu G X, Meng W. 1998. Gearing between the Indo-monsoon Circulation and the Pacific-Walker Circulation and the ENSO Part I:data analyses. Sci. Atmos. Sinica, 22(4):470-480. (in Chinese with English abstract)
Wu R G, Kirtman B P. 2004. Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17(20):4 019-4 031.
Xu T F, Yuan D L, Yu Y Q, Zhao X. 2013. An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model. Adv. Atmos. Sci., 30(4):997-1 016,
Xu T F, Yuan D L. 2015. Why does the IOD-ENSO teleconnection disappear in some decades? Chin. J. Oceanol. Limnol., 33(2):534-544,
Yuan D L, Han W Q. 2006. Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. J. Phys. Oceanogr., 36(5):930-944.
Yuan D L, Wang J, Xu T F, Xu P, Hui Z, Zhao X, Luan Y H, Zheng W P, Yu Y Q. 2011. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean:roles of the Indonesian throughflow. J. Climate, 24(14):3 593-3 608.
Yuan D L, Xu P, Xu T F. 2017. Climate variability and predictability associated with the Indo-Pacific Oceanic channel dynamics in the CCSM4 coupled system model. Chin. J. Oceanol. Limnol., 35(1):23-28,
Yuan D L, Zhou H, Zhao X. 2013. Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian throughflow. J. Climate, 26(9):2 845-2 861.
Zhou Q, Duan W S, Mu M, Feng R. 2015. Influence of positive and negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow:results from sensitivity experiment. Adv. Atmos. Sci., 32(6):783-793.
Copyright © Haiyang Xuebao