Cite this paper:
DU Guoying, YAN Hongmei, LIU Chunrong, MAO Yunxiang. Behavioral and physiological photoresponses to light intensity by intertidal microphytobenthos[J]. HaiyangYuHuZhao, 2018, 36(2): 293-304

Behavioral and physiological photoresponses to light intensity by intertidal microphytobenthos

DU Guoying, YAN Hongmei, LIU Chunrong, MAO Yunxiang
Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
Abstract:
Behavioral and physiological responses to light are the two major mechanisms by which natural microphytobenthic assemblages adapt to the intertidal environment and protect themselves from light stress. The present study investigated these photoresponses with different light intensities over 8 h of illumination, and used a specific inhibitor (Latrunculin A, Lat A) for migration to compare migratory and non-migratory microphytobenthos (MPB). Photosynthetic activity was detected using rapid light curves and induction curves by chlorophyll fluorescence. It showed distinct variation in migratory responses to different light intensities; high light induced downward migration to avoid photoinhibition, and low and medium light (50-250 μmol/(m2·s)) promoted upward migration followed by downward migration after certain period of light exposure. No significant difference in non-photochemical quenching (NPQ) or PSⅡ maximal quantum yield (Fv/Fm) was detected between low and medium light irradiance, possibly indicating that only high light influences the photosynthetic capability of MPB. Decreased photosynthetic activity, indicated by three parameters, the maximum relative electron transport rate (rETRmax), minimum saturating irradiance (Ek) and light utilization coefficient (α), was observed in MPB after exposure to prolonged illumination under low and medium light. Lat A effectively inhibited the migration of MPB in all light treatments and induced lower Fv/F m under high light (500 and 100 μmol/(m2·s)) and prolonged illumination at 250 μmol/(m2·s), but did not significantly influence Fv/Fm under low light (0-100 μmol/(m2·s)) or NPQ. The increase of NPQ in Lat A treatments with time implied that the MPB assemblages can recover their physiological photoprotection capacity to adapt to light stress. Non-migratory MPB exhibited lower light use efficiency (lower α) and lower maximum photosynthetic capacity (lower rETRmax) than migratory MPB under light intensities above 250 μmol/(m2·s) after 4.0 h illumination.
Key words:    microphytobenthos|vertical migration|photophysiology|chlorophyll fluorescence|photoprotection   
Received: 2016-04-28   Revised:
Tools
PDF (597 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by DU Guoying
Articles by YAN Hongmei
Articles by LIU Chunrong
Articles by MAO Yunxiang
References:
Blanchard G F, Guarini J M, Dang C, Richard P. 2004.Characterizing and quantifying photoinhibition in intertidal microphytobenthos. J. Phycol., 40(4):692-696.
Cartaxana P, Ruivo M, Hubas C, Davidson I, Serôdio J, Jesus B. 2011. Physiological versus behavioral photoprotection in intertidal epipelic and epipsammic benthic diatom communities. J. Exp. Mar. Biol. Ecol., 405(1-2):120-127.
Cartaxana P, Serôdio J. 2008. Inhibiting diatom motility:a new tool for the study of the photophysiology of intertidal microphytobenthic biofilms. Limnol. Oceanogr. Meth., 6(9):466-476.
Consalvey M, Jesus B, Perkins R G P, Brotas V, Underwood G J C, Paterson D M. 2004b. Monitoring migration and measuring biomass in benthic biofilms:the effects of dark/far-red adaptation and vertical migration on fluorescence measurements. Photosyth. Res., 81(1):91-101.
Consalvey M, Paterson D M, Underwood G J C. 2004a. The ups and downs of life in a benthic biofilm:migration of benthic diatoms. Diatom Res., 19(2):181-202.
Du G Y, Li W T, Li H B, Chung I K. 2012. Migratory responses of benthic diatoms to light and temperature monitored by chlorophyll fluorescence. J. Plant Biol., 55(2):159-164.
Du G Y, Oak J H, Chung I K. 2010b. Effect of light and sediment grain size on the vertical migration of benthic diatoms. Algae, 25(3):133-140.
Du G Y, Son M, An S, Chung I K. 2010a. Temporal variation in the vertical distribution of microphytobenthos in intertidal flats of the Nakdong River estuary, Korea.Estuar. Coast. Shelf Sci., 86(1):62-70.
Du G Y, Son M, Yun M S, An S, Chung I K. 2009.Microphytobenthic biomass and species composition in intertidal flats of the Nakdong River estuary, Korea.Estuar. Coast. Shelf Sci., 82(4):663-672.
Genty B, Briantais J M, Baker N R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochim. Biophys. Acta, 990(1):87-92.
Goss R, Jakob T. 2010. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth.Res., 106(1-2):103-122.
Guarini J M, Blanchard G F, Gros P, Gouleau D, Bacher C. 2000. Dynamic model of the short-term variability of microphytobenthic biomass on temperate intertidal mudflats. Mar. Ecol. Prog. Ser., 195:291-303.
Hay S I, Maitland T C, Paterson D M. 1993. The speed of diatom migration through natural and artificial substrata.Diatom Res., 8(2):371-384.
Hopkins J T. 1963. A study of the diatoms of the Ouse Estuary, Sussex I. The movement of the mud-flat diatoms in response to some chemical and physical changes. J. Mar.Bio. Assoc. U. K., 43(3):653-663.
Horton P, Hague A. 1988. Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. Biochim. Biophys. Acta, 932:107-115.
Jesus B, Mouget J L, Perkins R G. 2008. Detection of diatom xanthophyll cycle using spectral reflectance. J. Phycol., 44(5):1 349-1 359.
Jesus B, Perkins R G, Consalvey M, Brotas V, Paterson D M. 2006. Effects of vertical migrations by benthic microalgae on fluorescence measurements of photophysiology. Mar.Ecol. Prog. Ser., 315:55-66.
Kromkamp J, Barranguet C, Peene J. 1998. Determination of microphytobenthos PSⅡ quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Mar. Ecol. Prog. Ser., 162:45-55.
Lavaud J, Rousseau B, Etienne A L. 2002b. In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching.FEBS Lett., 523(1-3):163-166.
Lavaud J, Rousseau B, Etienne A L. 2004. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol., 40(1):130-137.
Lavaud J, Rousseau B, van Gorkom H J, Etienne A L. 2002a. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Plant Physiol., 129(3):1 398-1 406.
Lavaud J. 2007. Fast regulation of photosynthesis in diatoms:mechanisms, evolution and ecophysiology. Funct. Plant Sci. Biotech., 1(2):267-287.
Laviale M, Frankenbach S, Serôdio J. 2016. The importance of being fast:comparative kinetics of vertical migration and non-photochemical quenching of benthic diatoms under light stress. Mar. Biol., 163:10, https://doi.org/10.1007/s00227-015-2793-7.
Mouget J L, Perkins R, Consalvey M, Lefebvre S. 2008.Migration or photoacclimation to prevent high irradiance and UV-B damage in marine microphytobenthic communities. Aquat. Microb. Ecol., 52:223-232.
Müller P, Li X P, Niyogi K K. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol., 125(4):1 558-1 566.
Ní Longphuirt S, Leynaert A, Guarini J M, Chauvaud L, Claquin P, Herlory O, Amice E, Huonnic P, Ragueneau O. 2006. Discovery of microphytobenthos migration in the subtidal zone. Mar. Ecol. Prog. Ser., 328:143-154.
Paterson D M. 1986. The migratory behaviour of diatom assemblages in a laboratory tidal micro-ecosystem examined by low temperature scanning electron microscopy. Diatom Res., 1(2):227-239.
Perkins R G, Lavaud J, Serôdio J, Mouget J L, Cartaxana P, Rosa P, Barille L, Brotas V, Jesus B M. 2010. Vertical cell movement is a primary response of intertidal benthic biofilms to increasing light dose. Mar. Ecol. Prog. Ser., 416:93-103.
Perkins R G, Oxborough K, Hanlon A R M, Underwood G J C, Baker N R. 2002. Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms?. Mar. Ecol. Prog.Ser., 228:47-56.
Perkins R G, Underwood G J C, Brotas V, Snow G C, Jesus B, Ribeiro L. 2001. Responses of microphytobenthos to light:primary production and carbohydrate allocation over an emersion period. Mar. Ecol. Prog. Ser., 223:101-112.
Pinckney J, Zingmark R G. 1991. Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Mar.Ecol. Prog. Ser., 76(1):81-89.
Platt T, Gallegos C L, Harrison W G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res., 38(4):687-701.
Roncarati F, Rijstenbil J W, Pistocchi R. 2008. Photosynthetic performance, oxidative damage and antioxidants in Cylindrotheca closterium in response to high irradiance, UVB radiation and salinity. Mar. Biol., 153(5):965-973.
Schreiber U, Berry J A. 1977. Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta, 136(3):233-238.
Serôdio J, Catarino F. 1999. Fortnightly light and temperature variability in estuarine intertidal sediments and implications for microphytobenthos primary productivity.Aquat. Ecol., 33(3):235-241.
Serôdio J, Catarino F. 2000. Modelling the primary productivity of intertidal microphytobenthos:time scales of variability and effects of migratory rhythms. Mar. Ecol. Prog. Ser., 192:13-30.
Serôdio J, Coelho H, Vieira S, Cruz S. 2006. Microphytobenthos vertical migratory photoresponse as characterised by light-response curves of surface biomass. Estuar. Coast.Shelf Sci., 68(3-4):547-556.
Serôdio J, Cruz S, Vieira S, Brotas V. 2005. Non-photochemical quenching of chlorophyll fluorescence and operation of the xanthophyll cycle in estuarine microphytobenthos. J.Exp. Mar. Biol. Ecol., 326(2):157-169.
Serôdio J, da Silva J M, Catarino F. 1997. Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence. J.Phycol., 33(3):542-553.
Serôdio J, da Silva J M, Catarino F. 2001. Use of in vivo chlorophyll a fluorescence to quantify short-term variations in the productive biomass of intertidal microphytobenthos. Mar. Ecol. Prog. Ser., 218:45-61.
Serôdio J, Ezequiel J, Barnett A, Mouget J L, Méléder V, Laviale M, Lavaud J. 2012. Efficiency of photoprotection in microphytobenthos:Role of vertical migration and the xanthophyll cycle against photoinhibition. Aquat. Microb.Ecol., 67(2):161-175.
Serôdio J, Lavaud J. 2011. A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Photosynth. Res., 108(1):61-76.
Serôdio J, Vieira S, Cruz S. 2008. Photosynthetic activity, photoprotection and photoinhibition in intertidal microphytobenthos as studied in situ using variable chlorophyll fluorescence. Cont. Shelf Res., 28(10-11):1 363-1 375.
Serôdio J. 2004. Analysis of variable chlorophyll fluorescence in microphytobenthos assemblages:implications of the use of depth-integrated measurements. Aquat. Microb.Ecol., 36:137-152.
Underwood G J C, Kromkamp J. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Adv.Ecol. Res., 29:93-153.
Underwood G J C, Perkins R G, Consalvey M C, Hanlon A R M, Oxborough K, Baker N R, Paterson D M. 2005. Patterns in microphytobenthic primary productivity:species-specific variation in migratory rhythms and photosynthetic efficiency in mixed-species biofilms.Limnol. Oceanogr., 50(3):755-767.
Walters R G, Horton P. 1991. Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth. Res., 27(2):121-133.
Waring J, Baker N R, Underwood G J C. 2007. Responses of estuarine intertidal microphytobenthic algal assemblages to enhanced ultraviolet B radiation. Glob. Change Biol., 13(7):1 398-1 413.
Waring J, Klenell M, Bechtold U, Underwood G J C, Baker N R. 2010. Light-induced responses of oxygen photoreduction, reactive oxygen species production and scavenging in two diatom species. J. Phycol., 46(6):1 206-1 217.
Wu H Y, Cockshutt A M, McCarthy A, Campbell D A. 2011. Distinctive photosystem Ⅱ photoinactivation and protein dynamics in marine diatoms. Plant Physiol., 156(4):2 184-2 195.