Cite this paper:
LUO Qing, ZHANG Guoliang. Control of subduction rate on Tonga-Kermadec arc magmatism[J]. Journal of Oceanology and Limnology, 2018, 36(3): 687-699

Control of subduction rate on Tonga-Kermadec arc magmatism

LUO Qing1,2, ZHANG Guoliang1,3,4
1 Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Laboratory of Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
4 Deep-Sea Extreme Environment and Life Processes Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
Dehydration/melting of oceanic crusts during returning to the mantle in subduction zones are related to origin of arc lavas. The factors that influence arc magmatism include compositions of the subducting slabs, mantle wedge and subduction rates. However, distinguishing these factors remains difficult and highly debated. Subducting rate is related to the total mass of inputs and controls thermal structure, thus plays a crucial role in arc magmatism. Here we explore the relationships between geochemical variations of arc lavas and convergence rates (increasing from 46 mm/a to the south to 83 mm/a to the northward) in the Tonga-Kermadec arc system. Data of geochemistry for lava samples from nine islands of this arc system are collected and compiled to investigate the role of subduction rate in arc magmatism. Lavas from the northern Tonga arc with a faster subduction rate show broadly lower concentrations of TiO2 and highfield-strength elements (HFSEs, e.g. Nb, Ta, Zr, Hf), and higher Ba/Th, U/Th ratios than the Kermadec Arc to the south. Some of the Kermadec lavas show the highest values of Th/Nb ratio. We suggest that the northern Tonga arc with a higher subduction rate has been influenced by a stronger role of subductionreleased fluid, which results in stronger large-ion-lithophile elements (LILEs) and relatively weaker HFSEs contribution. It is interpreted that faster subduction rate tend to create a cooler subduction zone, leading to stronger dehydration subduction slab contribution with, thus, higher LILE/HFSE ratios of arc lavas. The conclusion contributes to a better understanding of arc magmatism, and ultimately the long-term chemical differentiation of the Earth. More supplementary geochemical data along Tonga-Kermadec arc and tests in other arcs are needed.
Key words:    subduction rate|arc magmatism|Tonga-Kermadec Arc   
Received: 2017-01-20   Revised:
Tools
PDF (5162 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LUO Qing
Articles by ZHANG Guoliang
References:
Barker S J, Wilson C J N, Baker J A et al. 2013. Geochemistry and petrogenesis of silicic magmas in the intra-oceanic Kermadec arc. Journal of Petrology, 54(2):351-391, https://doi.org/10.1093/petrology/egs071.
Bevis M, Taylor F W, Schutz B E et al. 1995. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature, 374(6519):249-251, https://doi.org/10.1038/374249a0.
Brenan J M, Shaw H F, Phinney D L et al. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th:implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters, 128(3-4):327-339, https://doi.org/10.1016/0012-821x(94)90154-6.
Carter L, Carter R M, McCave I N et al. 1996. Regional sediment recycling in the abyssal southwest Pacific Ocean. Geology, 24(8):735-738, http://geology.gsapubs.org/content/24/8/735.
Castillo P R, Lonsdale P F, Moran C L et al. 2009. Geochemistry of mid-cretaceous pacific crust being subducted along the Tonga-Kermadec trench:implications for the generation of arc lavas. Lithos, 112(1-2):87-102, https://doi.org/10.1016/j.lithos.2009.03.041.
Caulfield J T, Turner S P, Dosseto A et al. 2008. Source depletion and extent of melting in the Tongan sub-arc mantle. Earth and Planetary Science Letters, 273(3-4):279-288, https://doi.org/10.1016/j.epsl.2008.06.040.
Clift P D, Rose E F, Shimizu N et al. 2001. Tracing the evolving flux from the subducting plate in the Tonga-Kermadec arc system using boron in volcanic glass. Geochimica et Cosmochimica Acta, 65(19):3 347-3 364, https://doi.org/10.1016/S0016-7037(01)00670-6.
Conder J A, Wiens D A. 2007. Rapid mantle flow beneath the Tonga volcanic arc. Earth and Planetary Science Letters, 264(1-2):299-307, https://doi.org/10.1016/j.epsl.2007.10.014.
Contreras-Reyes E, Grevemeyer I, Watts A B et al. 2011. Deep seismic structure of the Tonga subduction zone:implications for mantle hydration, tectonic erosion, and arc magmatism. Journal of Geophysical Research, 116(B10):B10103, https://doi.org/10.1029/2011jb008434.
Cooper L B, Plank T, Arculus R J et al. 2010. High-Ca boninites from the active Tonga arc. Journal of Geophysical Research, 115(B10):B10206, https://doi.org/10.1029/2009JB006367.
Crawford W C, Hildebrand J A, Dorman L M et al. 2003.Tonga ridge and Lau basin crustal structure from seismic refraction data. Journal of Geophysical Research, 108(B4):2 195, https://doi.org/10.1029/2001JB001435.
Demets C, Gordon R G, Argus D F et al. 1990. Current plate motions. Geophysical Journal International, 101(2):425-478, https://doi.org/10.1111/j.1365-246X.1990.tb06579.x.
Elliott T, Plank T, Zindler A et al. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102(B7):14 991-15 019, https://doi.org/10.1029/97JB00788.
Elliott T. 2003. Tracers of the slab. In:Eiler J ed. Inside the Subduction Factory. Washington, DC:American Geophysical Union. Geophysical Monograph Series, 138:23-45.
England P C, Katz R F. 2010. Melting above the anhydrous solidus controls the location of volcanic arcs. Nature, 467(7316):700-703, https://doi.org/10.1038/nature09417.
Evans K A. 2012. The redox budget of subduction zones.Earth-Science Reviews, 113(1-2):11-32, https://doi.org/10.1016/j.earscirev.2012.03.003.
Ewart A, Bryan W B, Chappell B W et al. 1994. Regional geochemistry of the Lau-Tonga arc and backarc systems.Proceedings of the Ocean Drilling Program. Scientific Results, 135:385-425.
Ewart A, Collerson K D, Regelous M et al. 1998. Geochemical evolution within the Tonga-Kermadec-Lau arc-backarc systems:the role of varying mantle wedge composition in space and time. Journal of Petrology, 39(3):331-368, https://doi.org/10.1093/petrology/39.3.331.
Ewart A, Hawkesworth C J. 1987. The pleistocene-recent Tonga-Kermadec arc lavas:interpretation of new isotopic and rare earth data in terms of a depleted mantle source model. Journal of Petrology, 28(3):495-530, https://doi.org/10.1093/petrology/28.3.495.
Falloon T J, Crawford A J. 1991. The petrogenesis of highcalcium boninite lavas dredged from the northern Tonga ridge. Earth and Planetary Science Letters, 102(3-4):375-394, https://doi.org/10.1016/0012-821x(91)90030-L.
Falloon T J, Danyushevsky L V, Crawford A J et al. 2008.Boninites and adakites from the northern termination of the Tonga trench:implications for adakite petrogenesis.Journal of Petrology, 49(4):697-715, https://doi.org/10.1093/petrology/egm080.
Falloon T J, Green D H, Crawford A J. 1987. Dredged igneous rocks from the northern termination of the Tofua magmatic arc, Tonga and adjacent Lau basin. Australian Journal of Earth Sciences, 34(4):487-506, https://doi.org/10.1080/08120098708729428.
Gamble J, Woodhead J, Wright I et al. 1996. Basalt and sediment geochemistry and magma petrogenesis in a transect from oceanic island arc to rifted continental margin arc:the Kermadec-Hikurangi margin, SW Pacific.Journal of Petrology, 37(6):1 523-1 546, https://doi.org/10.1093/petrology/37.6.1523.
George R, Turner S, Morris J et al. 2005. Pressure-temperature-time paths of sediment recycling beneath the TongaKermadec arc. Earth and Planetary Science Letters, 233(1):195-211, https://doi.org/10.1016/j.epsl.2005.01.020.
Green D H. 1973. Experimental melting studies on a model upper mantle composition at high pressure under watersaturated and water-undersaturated conditions. Earth and Planetary Science Letters, 19(1):37-53, https://doi.org/10.1016/0012-821x(73)90176-3.
Grove T L, Till C B, Lev E et al. 2009. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature, 459(7247):694-697, https://doi.org/10.1038/nature08044.
Haase K M, Regelous M, Beier C. 2016. Sediment melt flux into the melting zone of the northernmost Tonga island arc. Mineralogical Magazine, 75(3):962-1 075.
Haase K M, Worthington T J, Stoffers P et al. 2002. Mantle dynamics, element recycling, and magma genesis beneath the Kermadec arc-Havre trough. Geochemistry, Geophysics, Geosystems, 3(11):1-22, https://doi.org/10.1029/2002GC000335.
Hawkesworth C J, Gallagher K, Hergt J M et al. 1993. Mantle and slab contributions in ARC magmas. Annual Review of Earth and Planetary Sciences, 21(1):175-204, https://doi.org/10.1146/annurev.ea.21.050193.001135.
Hibbard J P, Laughland M M, Kang S M et al. 1993. The thermal imprint of spreading ridge subduction on the upper structural levels of an accretionary prism, southwest Japan. Special Papers, 273:83-102, https://doi.org/10.1130/SPE273-p83.
Hoogewerff J A, Van Bergen M J, Vroon P Z et al. 1997.U-series, Sr-Nd-Pb isotope and trace-element systematics across an active island arc-continent collision zone:implications for element transfer at the slab-wedge interface. Geochimica et Cosmochimica Acta, 61(5):1 057-1 072, https://doi.org/10.1016/S0016-7037(97) 84621-2.
Hyndman R D, Peacock S M. 2003. Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212(3-4):417-432, https://doi.org/10.1016/S0012-821x(03)00263-2.
Johnson M C, Plank T. 1999. Dehydration and melting experiments constrain the fate of subducted sediments.Geochemistry, Geophysics, Geosystems, 1(12):1 007, https://doi.org/10.1029/1999GC000014.
Kelley K A, Plank T, Farr L et al. 2005. Subduction cycling of U, Th, and Pb. Earth and Planetary Science Letters, 234(3-4):369-383, https://doi.org/10.1016/j.epsl.2005.03.005.
Kelley K A, Plank T, Grove T L et al. 2006. Mantle melting as a function of water content beneath back-arc basins.Journal of Geophysical Research, 111(B9):B09208, https://doi.org/10.1029/2005JB003732.
Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380(6571):237-240, https://doi.org/10.1038/380237a0.
Kirby S H, Durham W B, Stern L A. 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 252(5003):216-225, https://doi.org/10.1126/science.252.5003.216.
McDonough W F, Sun S S. 1995. The composition of the Earth. Chemical Geology, 120(3):223-253, https://doi.org/10.1016/0009-2541(94)00140-4.
Morris J D, Leeman W P, Tera F. 1990. The subducted component in island arc lavas:constraints from be isotopes and B-Be systematics. Nature, 344(6261):31-36, https://doi.org/10.1038/344031a0.
Mühe R, Peucker-Ehrenbrink B, Devey C W et al. 1997. On the redistribution of Pb in the oceanic crust during hydrothermal alteration. Chemical Geology, 137(1-2):67-77, https://doi.org/10.1016/S0009-2541(96)00151-9.
Peacock S M. 1990a. Numerical simulation of metamorphic pressure-temperature-time paths and fluid production in subducting slabs. Tectonics, 9(5):1 197-1 211, https://doi.org/10.1029/TC009i005p01197.
Peacock S M. 1990b. Fluid processes in subduction zones.Science, 248(4953):329-337, https://doi.org/10.1126/science.248.4953.329.
Peacock S M. 1996. Thermal and Petrologic Structure of Subduction Zones. In:Gray E B ed. Subduction Top to Bottom. Washington, DC:American Geophysical Union.Geophysical Monograph Series. p.19-113.
Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1):251-285, https://doi.org/10.1146/annurev.ea.23.050195.001343.
Pearce J A, Stern R J, Bloomer S H. 2005. Geochemical mapping of the Mariana arc-basin system:implications for the nature and distribution of subduction components.Geochemistry, Geophysics, Geosystems, 6(7):Q07006, https://doi.org/10.1029/2004GC000895.
Pelletier B, Louat R. 1989. Seismotectonics and present-day relative plate motions in the Tonga-Lau and KermadecHavre region. Tectonophysics, 165(1-4):237-250, https://doi.org/10.1016/0040-1951(89)90049-8.
Peucker-Ehrenbrink B, Hofmann A W, Hart S R. 1994.Hydrothermal lead transfer from mantle to continental crust:the role of metalliferous sediments. Earth and Planetary Science Letters, 125(1-4):129-142, https://doi.org/10.1016/0012-821X(94)90211-9.
Plank T, Langmuir C H. 1993. Tracing trace elements from sediment input to volcanic output at subduction zones.Nature, 362(6422):739-743, https://doi.org/10.1038/362739a0.
Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145(3-4):325-394, https://doi.org/10.1016/S0009-2541(97)00150-2.
Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5):921-944, https://doi.org/10.1093/petrology/egi005.
Price A A, Jackson M G, Blichert-Toft J et al. 2016.Geochemical evidence in the northeast Lau basin for subduction of the cook-austral volcanic chain in the Tonga trench. Geochemistry, Geophysics, Geosystems, 17(5):1 694-1 724, https://doi.org/10.1002/2015GC006237.
Regelous M, Collerson K D, Ewart A et al. 1997. Trace element transport rates in subduction zones:evidence from Th, Sr and Pb isotope data for Tonga-Kermadec arc lavas. Earth and Planetary Science Letters, 150(3-4):291-302, https://doi.org/10.1016/S0012-821x(97)00107-6.
Regelous M, Gamble J A, Turner S P. 2010. Mechanism and timing of Pb transport from subducted oceanic crust and sediment to the mantle source of arc lavas. Chemical Geology, 273(1-2):46-54, https://doi.org/10.1016/j.chemgeo.2010.02.011.
Ryerson F J, Watson E B. 1987. Rutile saturation in magmas:implications for Ti-Nb-Ta depletion in island-arc basalts.Earth and Planetary Science Letters, 86(2-4):225-239, https://doi.org/10.1016/0012-821x(87)90223-8.
Smith I E M, Price R C. 2006. The Tonga-Kermadec arc and Havre-Lau back-arc system:their role in the development of tectonic and magmatic models for the western pacific.Journal of volcanology and geothermal research, 156(3-4):315-331, https://doi.org/10.1016/j.jvolgeores.2006.03.006.
Smith I E M, Stewart R B, Price R C et al. 2010. Are arc-type rocks the products of magma crystallisation? Observations from a simple oceanic arc volcano:Raoul Island, Kermadec arc, SW pacific. Journal of Volcanology and Geothermal Research, 190(1-2):219-234, https://doi.org/10.1016/j.jvolgeores.2009.05.006.
Smith I E M, Worthington T J, Price R C et al. 2006.Petrogenesis of dacite in an oceanic subduction environment:Raoul Island, Kermadec arc. Journal of volcanology and geothermal research, 156(3-4):252-265, https://doi.org/10.1016/j.jvolgeores.2006.03.003.
Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust:a review. Lithos, 170-171:208-223, https://doi.org/10.1016/j.lithos.2013.02.016.
Stern R J. 2002. Subduction zones. Reviews of Geophysics, 40(4):3-1-3-38, https://doi.org/10.1029/2001rg000108.
Sutherland R, Hollis C. 2001. Cretaceous demise of the Moa plate and strike-slip motion at the Gondwana margin.Geology, 29(3):279-282, https://doi.org/10.1130/0091-7613(2001)029<0279:cdotmp>2.0.co;2.
Syracuse E M, van Keken P E, Abers G A. 2010. The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183(1-2):73-90, https://doi.org/10.1016/j.pepi.2010.02.004.
Tian L Y, Castillo P R, Hilton D R et al. 2011. Major and trace element and Sr-Nd isotope signatures of the northern Lau basin lavas:implications for the composition and dynamics of the back-arc basin mantle. Journal of Geophysical Research, 116(B11):B11201, https://doi.org/10.1029/2011JB008791.
Timm C, Bassett D, Graham I J et al. 2013. Louisville seamount subduction and its implication on mantle flow beneath the central Tonga-Kermadec arc. Nature Communications, 4:1 720, https://doi.org/10.1038/ncomms2702.
Timm C, Davy B, Haase K et al. 2014. Subduction of the oceanic Hikurangi plateau and its impact on the Kermadec arc. Nature Communications, 5:4 923, https://doi.org/10.1038/ncomms5923.
Timm C, Graham I J, de Ronde C E J et al. 2011. Geochemical evolution of Monowai volcanic center:new insights into the northern Kermadec arc subduction system, SW Pacific. Geochemistry, Geophysics, Geosystems, 12:Q0AF01, https://doi.org/10.1029/2011gc003654.
Timm C, Leybourne M I, Hoernle K et al. 2016. Trenchperpendicular geochemical variation between two adjacent Kermadec arc volcanoes Rumble Ⅱ east and west:the role of the subducted Hikurangi plateau in element recycling in arc magmas. Journal of Petrology, 57(7):1 335-1 360, https://doi.org/10.1093/petrology/egw042.
Turner S, Bourdon B, Hawkesworth C et al. 2000. 226Ra-230Th evidence for multiple dehydration events, rapid melt ascent and the time scales of differentiation beneath the Tonga-Kermadec island arc. Earth and Planetary Science Letters, 179(3-4):581-593, https://doi.org/10.1016/S0012-821X(00)00141-2.
Turner S, Caulfield J, Rushmer T et al. 2012. Magma evolution in the primitive, intra-oceanic Tonga arc:rapid petrogenesis of dacites at Fonualei volcano. Journal of Petrology, 53(6):1 231-1 253, https://doi.org/10.1093/petrology/egs005.
Turner S, Handler M, Bindeman I et al. 2009. New insights into the origin of O-Hf-Os isotope signatures in arc lavas from Tonga-Kermadec. Chemical Geology, 266(3-4):187-193, https://doi.org/10.1016/j.chemgeo.2009.05.027.
Turner S, Hawkesworth C, Rogers N et al. 1997. 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochimica et Cosmochimica Acta, 61(22):4 855-4 884, https://doi.org/10.1016/s0016-7037(97)00281-0.
Turner S, Hawkesworth C. 1997. Constraints on flux rates and mantle dynamics beneath island arcs from TongaKermadec lava geochemistry. Nature, 389(6651):568-573, https://doi.org/10.1038/39257.
Turner S, Hawkesworth C. 1998. Using geochemistry to map mantle flow beneath the Lau Basin. Geology, 26(11):1 019-1 022, https://doi.org/10.1130/0091-7613(1998)026<1019:Ugtmmf>2.3.Co;2.
van Keken P E, Hacker B R, Syracuse E M et al. 2011.Subduction factory:4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical Research, 116(B1):B01401, https://doi.org/10.1029/2010JB007922.
van Keken P E, Kiefer B, Peacock S M. 2002. High-resolution models of subduction zones:implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochemistry, Geophysics, Geosystems, 3(10):1-20, https://doi.org/10.1029/2001GC000256.
Wendt J I, Regelous M, Collerson K D et al. 1997. Evidence for a contribution from two mantle plumes to island-arc lavas from northern Tonga. Geology, 25(7):611-614, https://doi.org/10.1130/0091-7613(1997)025<0611:efacft>2.3.co;2.
Woodhead J, Eggins S, Gamble J. 1993. High field strength and transition element systematics in island arc and backarc basin basalts:evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters, 114(4):491-504, https://doi.org/10.1016/0012-821X(93)90078-N.
Wyllie P J. 1979. Magmas and volatile components. American Mineralogist, 64(5-6):469-500.
Zellmer G F, Edmonds M, Straub S M. 2015. Volatiles in subduction zone magmatism. Geological Society, London, Special Publications, 410(1):1-17, https://doi.org/10.1144/sp410.13.
Zhang G L, Smith-Duque C, Tang S H et al. 2012. Geochemistry of basalts from IODP Site U1365:implications for magmatism and mantle source signatures of the midcretaceous osbourn trough. Lithos, 144-145:73-87, https://doi.org/10.1016/j.lithos.2012.04.014.
Zhang G L, Smith-Duque C. 2014. Seafloor basalt alteration and chemical change in the ultra thinly sedimented south pacific. Geochemistry, Geophysics, Geosystems, 15(7):3 066-3 080, https://doi.org/10.1002/2013GC005141.
Zhang G, Li C. 2016. Interactions of the greater Ontong Java mantle plume component with the Osbourn Trough.Scientific Reports, 6:37 561, https://doi.org/10.1038/srep37561.
Copyright © Haiyang Xuebao