Cite this paper:
ZHAO Bo, LIU Jinhu, SONG Junjie, CAO Liang, DOU Shuozeng. Otolith shape analysis for stock discrimination of two Collichthys genus croaker (Pieces: Sciaenidae,) from the northern Chinese coast[J]. Journal of Oceanology and Limnology, 2018, 36(3): 981-989

Otolith shape analysis for stock discrimination of two Collichthys genus croaker (Pieces: Sciaenidae,) from the northern Chinese coast

ZHAO Bo1,3, LIU Jinhu1,2, SONG Junjie1,3, CAO Liang1,2, DOU Shuozeng1,2,3
1 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
The otolith morphology of two croaker species (Collichthys lucidus and Collichthys niveatus) from three areas (Liaodong Bay, LD; Huanghe (Yellow) River estuary, HRE; Jiaozhou Bay, JZ) along the northern Chinese coast were investigated for species identification and stock discrimination. The otolith contour shape described by elliptic Fourier coefficients (EFC) were analysed using principal components analysis (PCA) and stepwise canonical discriminant analysis (CDA) to identify species and stocks. The two species were well differentiated, with an overall classification success rate of 97.8%. And variations in the otolith shapes were significant enough to discriminate among the three geographical samples of C. lucidus (67.7%) or C. niveatus (65.2%). Relatively high mis-assignment occurred between the geographically adjacent LD and HRE samples, which implied that individual mixing may exist between the two samples. This study yielded information complementary to that derived from genetic studies and provided information for assessing the stock structure of C. lucidus and C. niveatus in the Bohai Sea and the Yellow Sea.
Key words:    otolith|size descriptors|elliptic Fourier coefficients (EFC)|stock structure|Collichthys lucidus|Collichthys niveatus   
Received: 2017-03-22   Revised:
Tools
PDF (531 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHAO Bo
Articles by LIU Jinhu
Articles by SONG Junjie
Articles by CAO Liang
Articles by DOU Shuozeng
References:
Avigliano E, Domanico A, Sánchez S, Volpedo A V. 2017.Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fish. Res., 186:1-10.
Avigliano E, Velasco G, Volpedo A V. 2015. Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean. Environ. Biol. Fish., 98(6):1 623-1 632.
Begg G A, Brown R W. 2000. Stock identification of haddock Melanogrammus aeglefinus on Georges bank based on otolith shape analysis. Trans. Am. Fish. Soc., 129(4):935-945.
Begg G A, Waldman J R. 1999. An holistic approach to fish stock identification. Fish. Res., 43(1-3):35-44.
Bian C W, Jiang W S, Pohlmann T, Sündermann J. 2016.Hydrography-physical description of the Bohai Sea. In:Harff J, Zhang H eds. Environmental Processes and the Natural and Anthropogenic Forcing in the Bohai Sea, Eastern Asia. J. Coast. Res., 74:1-12.
Cadrin S X, Friedland K D. 1999. The utility of image processing techniques for morphometric analysis and stock identification. Fish. Res., 43(1-3):129-139.
Campana S E, Casselman J M. 1993. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci., 50(5):1 062-1 083.
Campana S E. 1999. Chemistry and composition of fish otoliths:pathways, mechanisms and applications. Mar.Ecol. Prog. Ser., 188:263-297.
Capoccioni F, Costa C, Aguzzi J, Menesatti P, Lombarte A, Ciccotti E. 2011. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) local stocks. J. Exp.Mar. Biol. Ecol., 397(1):1-7.
Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can.J. Fish. Aquat. Sci., 61(2):158-167.
Castonguay M, Simard P, Gagnon P. 1991. Usefulness of Fourier analysis of otolith shape for atlantic mackerel(Scomber scombrus) stock discrimination. Can. J. Fish.Aquat. Sci., 48(2):296-302.
Chen D G. 1991. Fisheries Ecology in the Yellow Sea and the Bohai Sea. China Ocean Press, Beijing, China. p.273-276.(in Chinese)
Crampton J S. 1995. Elliptic Fourier shape analysis of fossil bivalves:some practical considerations. Lethaia, 28(2):179-186.
Dou S Z, Yu X, Cao L. 2012. Otolith shape analysis and its application in fish stock discrimination:a case study.Oceanol. Limnol. Sin., 43(4):701-712. (in Chinese with English abstract)
Fay R R, Popper A N. 2000. Evolution of hearing in vertebrates:the inner ears and processing. Hear. Res., 149(1-2):1-10.
Ferguson G J, Ward T M, Gillanders B M. 2011. Otolith shape and elemental composition:complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish. Res., 110(1):75-83.
He B Q, Li H Q. 1988. Stock assessment of Collichthys lucidus in pearl river esturary. J. Fish. China, 12(2):125-134. (in Chinese with English abstract)
Hu Y, Zhang T, Yang G, Zhao F, Hou J L, Zhang L Z, Zhuang P. 2015. Assessment of resource situation of Collichthys lucidus in coastal waters of the Yangtze estuary. Chin. J.Appl. Ecol., 26(9):2 867-2 873. (in Chinese with English abstract)
Izzo C, Ward T M, Ivey A R, Suthers I M, Stewart J, Sexton S C, Gillanders B M. 2017. Integrated approach to determining stock structure:implications for fisheries management of sardine, Sardinops sagax, in Australian waters. Rev. Fish. Biol. Fish., 27(1):267-284.
Lleonart J, Salat J, Torres G J. 2000. Removing allometric effects of body size in morphological analysis. J. Theor.Biol., 205(1):85-93.
Lombarte A, Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ.Biol. Fish., 37(3):297-306.
Lord C, Morat F, Lecomte-Finiger R, Keith P. 2012. Otolith shape analysis for three Sicyopterus (Teleostei:Gobioidei:Sicydiinae) species from New Caledonia and Vanuatu.Environ. Biol. Fish., 93(2):209-222.
Lychakov D V, Rebane Y T. 2000. Otolith regularities. Hear.Res., 143(1-2):83-102.
Monteiro L R, Di Beneditto A P M, Guillermo L H, Rivera L A. 2005. Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fish. Res., 74(1-3):288-299.
Parisi-Baradad V, Lombarte A, Garcia-Ladona E, Cabestany J, Piera J, Chic O. 2005. Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Mar. Freshw.Res., 56(5):795-804.
Ponton D. 2006. Is geometric morphometrics efficient for comparing otolith shape of different fish species? J.Morphol., 267(6):750-757.
Reichenbacher B, Sienknecht U, Küchenhoff H, Fenske N. 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, †Prolebias). J. Morphol., 268(10):898-915.
Škeljo F, Ferri J. 2012. The use of otolith shape and morphometry for identification and size-estimation of five wrasse species in predator-prey studies. J. Appl. Ichthyol., 28(4):524-530.
Stransky C, MacLellan S E. 2005. Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Can. J. Fish. Aquat. Sci., 62(10):2 265-2 276.
Sun X P. 2005. The Bohai Sea. In:Su J L ed. China Offshore Hydrology. China Ocean Press, Beijing, China. p.182-190. (in Chinese)
Tang Y X. 2005. The Yellow Sea. In:Su J L ed. China Offshore Hydrology. China Ocean Press, Beijing, China. p.193-202. (in Chinese)The People's Republic of China Ministry of Agriculture, Fisheries Bureau. 2006-2016. China Fisheries Yearbook.China Agriculture Press, Beijing, China. (in Chinese)
Thresher R E. 1999. Elemental composition of otoliths as a stock delineator in fishes. Fish. Res., 43(1-3):165-204.
Tracey S R, Lyle J M, Duhamel G. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res., 77(2):138-147.
Tuset V M, Imondi R, Aguado G, Otero-Ferrer J L, Santschi L, Lombarte A, Love M. 2015. Otolith patterns of rockfishes from the Northeastern Pacific. J. Morphol., 276(4):458-469.
Vignon M, Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser., 411:231-241.
Vignon M. 2012. Ontogenetic trajectories of otolith shape during shift in habitat use:interaction between otolith growth and environment. J. Exp. Mar. Biol. Ecol., 420-421:26-32.
Wu Z X, Chen X L. 1991. Collichthy lucidus richardson:a preliminary study on the age and phasic growth of Collichthy lucidus. J. Zhejiang College Fish., 10(2):140-143. (in Chinese with English abstract)
Yin L N. 2013. Studies on genetic diversity and population structure of Collichthys lucidus. Ocean University of China, Qingdao. (in Chinese with English abstract)
Yu X, Cao L, Liu J H, Zhao B, Shan X J, Dou S Z. 2014.Application of otolith shape analysis for stock discrimination and species identification of five goby species (Perciformes:Gobiidae) in the northern Chinese coastal waters. Chin. J. Oceanol. Limnol., 32(5):1 060-1 073.
Zhang C, Ye Z J, Li Z G, Wan R, Ren Y P, Dou S Z. 2016.Population structure of Japanese Spanish mackerel Scomberomorus niphonius in the Bohai Sea, the Yellow Sea and the East China Sea:evidence from random forests based on otolith features. Fish. Sci., 82(2):251-256.
Zhang C, Ye Z J, Wan R, Ma Q Y, Li Z G. 2014. Investigating the population structure of small yellow croaker(Larimichthys polyactis) using internal and external features of otoliths. Fish. Res., 153:41-47.
Zhao M, Song W, Ma C Y, Zhang F Y, Jiang K J, Song Z M, Ma L B. 2015. Population genetic structure of Collichthys lucidus based on the mitochondrial cytochrome oxidase subunit I sequence. J. Fish. Sci. China, 22(2):233-242.
Copyright © Haiyang Xuebao