Cite this paper:
HUANG Yingying, ZHANG Haichun, GAO Rufeng, HUANG Xiaochen, YU Xiaojuan, CHEN Xuechu. Influence of light availability on the specific density, size and sinking loss of Anabaena flos-aquae and Scenedesmus obliquus[J]. Journal of Oceanology and Limnology, 2018, 36(4): 1053-1062

Influence of light availability on the specific density, size and sinking loss of Anabaena flos-aquae and Scenedesmus obliquus

HUANG Yingying1, ZHANG Haichun2, GAO Rufeng3, HUANG Xiaochen4, YU Xiaojuan5, CHEN Xuechu1,5
1 Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China;
2 Shanghai Environmental Monitoring Center, Shanghai 200235, China;
3 Shanghai Administration Center for Ocean Affairs, Shanghai 200050, China;
4 East Sea Information Center of State Oceanic Administration People's Republic of China, Shanghai 200137, China;
5 School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:
Harmful algal blooms in eutrophic waters pose a serious threat to freshwater ecosystems and human health. In-situ light availability control is one of the most commonly used technologies to suppress algae in lakes and reservoirs. To develop a better understanding of the effects of light on algal growth, specific density, colony size and sinking loss, Anabaena flos-aquae (cyanobacteria) and Scenedesmus obliquus (green algae) were evaluated in varying light scenarios. The results showed that the specific density and colony size of these two species varied during growth, and there were obvious differences among the light scenarios. At the end of exponential phase, S. obliquus incubated under light-limited condition maintained a higher specific density and formed larger aggregates, whereas A. flos-aquae formed a longer filament length. Both species exhibited higher sinking loss rates with lower light availability. These results implied that the sinking loss rate was not always constant but should be considered as a variable response to the change of light availability, and in-situ light availability control might result in a significant increase of the sinking loss of algae due to the change of size and specific density, thereby further affecting the algal biomass in the water column.
Key words:    specific density|size|light availability control|sinking loss   
Received: 2017-06-08   Revised:
Tools
PDF (1168 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by HUANG Yingying
Articles by ZHANG Haichun
Articles by GAO Rufeng
Articles by HUANG Xiaochen
Articles by YU Xiaojuan
Articles by CHEN Xuechu
References:
Ahn C Y, Park M H, Joung S H, Kim H S, Jang K Y, Oh H M. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation:laboratory and enclosure studies. Environ. Sci.Technol., 37(13):3 031-3 037, https://doi.org/10.1021/es034048z.
Bright D I, Walsby A E. 1999. The relationship between critical pressure and width of gas vesicles in isolates of Planktothrix rubescens from Lake Zürich. Microbiology, 145(10):2 769-2 775, https://doi.org/10.1099/00221287-145-10-2769.
Burford M A, O'Donohue M J. 2006. A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshwater Biology, 51(5):973-982, https://doi.org/10.1111/j.1365-2427.2006.01536.x.
Chen M J, Li J, Dai X, Sun Y, Chen F Z. 2011. Effect of phosphorus and temperature on chlorophyll a contents and cell sizes of Scenedesmus obliquus and Microcystis aeruginosa. Limnology, 12(2):187-192, https://doi.org/10.1007/s10201-010-0336-y.
Chen X C, He S B, Huang Y Y, Kong H N, Lin Y, Li C J, Zeng G Q. 2009a. Laboratory investigation of reducing two algae from eutrophic water treated with light-shading plus aeration. Chemosphere, 76(9):1 303-1 307, https://doi.org/10.1016/j.chemosphere.2009.05.027.
Chen X C, Kong H N, He S B, Wu D Y, Li C J, Huang X C. 2009b. Reducing harmful algae in raw water by lightshading. Process Biochemistry, 44(3):357-360, https://doi.org/10.1016/j.procbio.2008.11.002.
Condie S A, Bormans M. 1997. The influence of density stratification on particle settling, dispersion and population growth. J. Theor. Biol., 187(1):65-75, https://doi.org/10.1006/jtbi.1997.0417.
Diehl S, Berger S, Ptacnik R, Wild A. 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths:field experiments. Ecology, 83(2):399-411, https://doi.org/10.1890/0012-9658(2002)083[0399:PLANIA]2.0.CO;2.
Dockko S, Kim J, Lee H. 2015. Modeling and experiment for removal of algae and nutrient using a DAF system installed on a ferryboat. Desalin. Water Treat., 55(2):325-330, https://doi.org/10.1080/19443994.2014.913994.
Huang Y Y, Chen X C, He S B, An Y, Yu X J, Peng X. 2016.Sinking loss should be taken into account while studying the dynamics of Microcystis under light-availability control. J. Hazard. Mater., 314:270-276, https://doi.org/10.1016/j.jhazmat.2016.04.062.
Hudnell H K, Jones C, Labisi B, Lucero V, Hill D R, Eilers J. 2010. Freshwater harmful algal bloom (FHAB) suppression with solar powered circulation (SPC).Harmful Algae, 9(2):208-217, https://doi.org/10.1016/j.hal.2009.10.003.
Huisman J, Sharples J, Stroom J M, Visser P M, Kardinaal W E A, Verspagen J M H, Sommeijer B. 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology, 85(11):2 960-2 970, https://doi.org/10.1890/03-0763.
Huisman J, Van Oostveen P, Weissing F J. 1999. Critical depth and critical turbulence:two different mechanisms for the development of phytoplankton blooms. Limnol.Oceanogr., 44(7):1 781-1 787, https://doi.org/10.4319/lo.1999.44.7.1781.
Huisman J, Weissing F J. 1994. Light-limited growth and competition for light in well-mixed aquatic environments:an elementary model. Ecology, 75(2):507-520, https://doi.org/10.2307/1939554.
Huisman J, Weissing F J. 1995. Competition for nutrients and light in a mixed water column:a theoretical analysis. Am.Nat., 146(4):536-564, https://doi.org/10.1086/285814.
Huisman J. 1999. Population dynamics of light-limited phytoplankton:microcosm experiments. Ecology, 80(1):202-210, https://doi.org/10.1890/0012-9658(1999)080[0202:PDOLLP]2.0.CO;2.
Jezberová J, Komárková J. 2007. Morphometry and growth of three Synechococcus-like picoplanktic cyanobacteria at different culture conditions. Hydrobiologia, 578(1):17-27, https://doi.org/10.1007/s10750-006-0429-0.
Jungo E, Visser P M, Stroom J, Mur L R. 2001. Artificial mixing to reduce growth of the blue-green alga Microcystis in Lake Nieuwe Meer, Amsterdam:an evaluation of 7 years of experience. Water Science & Technology:Water Supply, 1(1):17-23.
Kaiblinger C, Greisberger S, Teubner K, Dokulil M T. 2007.Photosynthetic efficiency as a function of thermal stratification and phytoplankton size structure in an oligotrophic alpine lake. Hydrobiologia, 578(1):29-36, https://doi.org/10.1007/s10750-006-0430-7.
Kim H K, Kim J M, Lee Y J, Kim B I, Lee B C, Chang N I. 2007. Vertical profile of algal distribution during aeration prior to intake tower for safe drinking water. Water Sci.Technol., 55(1-2):321-327, https://doi.org/10.2166/wst.2007.057.
Kojima S. 2000. Corroborating study on algal control by partial shading of lake surface. Main-Water and Wastewater, 42(5):5-12. (in Japanese)
Kruk C, Peeters E T H M, Van Nes E H, Huszar V L M, Costa L S, Scheffer M. 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol. Oceanogr., 56(1):110-118, https://doi.org/10.4319/lo.2011.56.1.0110.
Li M, Gao L, Lin L. 2015. Specific growth rate, colonial morphology and extracellular polysaccharides (EPS)content of Scenedesmus obliquus grown under different levels of light limitation. Annales de LimnologieInternational Journal of Limnology, 51(4):329-334, https://doi.org/10.1051/limn/2015033.
Li M, Zhu W, Guo L L, Hu J, Chen H M, Xiao M. 2016. To increase size or decrease density? Different Microcystis species has different choice to form blooms. Sci. Rep., 6:37 056, https://doi.org/10.1038/srep37056.
Maestre-Valero J F, Martínez-Alvarez V, Nicolas E. 2013.Physical, chemical and microbiological effects of suspended shade cloth covers on stored water for irrigation. Agricultural Water Management, 118:70-78, https://doi.org/10.1016/j.agwat.2012.11.016.
Naselli-Flores L, Barone R. 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia, 578(1):87-95, https://doi.org/10.1007/s10750-006-0436-1.
Naselli-Flores L, Padisák J, Albay M. 2007. Shape and size in phytoplankton ecology:do they matter? Hydrobiologia, 578(1):157-161, https://doi.org/10.1007/s10750-006-2815-z.
O'Neil J M, Davis T W, Burford M A, Gobler C J. 2012. The rise of harmful cyanobacteria blooms:the potential roles of eutrophication and climate change. Harmful Algae, 14:313-334, https://doi.org/10.1016/j.hal.2011.10.027.
Padisák J, Soróczki-Pintér É, Rezner Z. 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton-An experimental study. Hydrobiologia, 500(1-3):243-257, https://doi.org/10.1023/a:1024613001147.
Pertoft H. 2000. Fractionation of cells and subcellular particles with Percoll. Journal of Biochemical and Biophysical Methods, 44(1-2):1-30, https://doi.org/10.1016/s0165-022x(00)00066-x.
Ptacnik R, Diehl S, Berger S. 2003. Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnol. Oceanogr., 48(5):1 903-1 912, https://doi.org/10.4319/lo.2003.48.5.1903.
Reynolds C S. 2006. Entrainment and distribution in the pelagic (Chapter 2). In:Reynolds C S ed. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.p.38-92.
Spencer C N, King D L. 1989. Role of light, carbon dioxide and nitrogen in regulation of buoyancy, growth and bloom formation of Anabaena flos-aquae. J. Plankton Res., 11(2):283-296, https://doi.org/10.1093/plankt/11.2.283.
Stoyneva M P, Descy J P, Vyverman W. 2007. Green algae in Lake Tanganyika:is morphological variation a response to seasonal changes? Hydrobiologia, 578(1):7-16, https://doi.org/10.1007/s10750-006-0428-1.
Visser P, Ibelings B, Van Der Veer B, Koedood J, Mur R. 1996.Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands. Freshwater Biology, 36(2):435-450, https://doi.org/10.1046/j.1365-2427.1996.00093.x.
Wolff D A. 1975. The separation of cells and subcellular particles by colloidal silica density gradient centrifugation.In:Prescott D M ed. Methods in Cell Biology. Academic Press, United States. p.85-104.
Yamamoto Y, Nakahara H. 2009. Seasonal variations in the morphology of bloom-forming cyanobacteria in a eutrophic pond. Limnology, 10(3):185-193, https://doi.org/10.1007/s10201-009-0270-z.
Copyright © Haiyang Xuebao