Cite this paper:
GUO Shujin, SUN Xiaoxia. Carbon biomass, production rates and export flux of copepods fecal pellets in the Changjiang (Yangtze) River estuary[J]. Journal of Oceanology and Limnology, 2018, 36(4): 1244-1254

Carbon biomass, production rates and export flux of copepods fecal pellets in the Changjiang (Yangtze) River estuary

GUO Shujin1, SUN Xiaoxia1,2,3
1 Jiaozhou Bay Marine Ecosystem Research Station, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Copepod fecal pellets are ubiquitous throughout the oceans. Their production and export can represent a highly efficient pathway of carbon export. However, the role these fecal pellets play in carbon export in the Changjiang (Yangtze) River estuary is not well known. Two cruises were carried out in the Changjiang estuary in the spring and summer of 2013, during which time carbon biomass, production, and export of copepod fecal pellets were studied. Spring and summer fecal pellet carbon biomass ranged 0.30-1.01 mg C/m3 (mean=0.56±0.20 mg C/m3) and 0.31-1.18 mg C/m3 (mean=0.64±0.24 mg C/m3), respectively, significantly lower than phytoplankton. At most stations, fecal pellet carbon biomass was higher in surface or subsurface layers than deeper layers. Production rates ranged 0.65-1.49 pellets/(ind.·h) (mean=1.02±0.27 pellets/(ind.·h)) in spring and 0.62-1.34 pellets/(ind.·h) (mean=0.98±0.22 pellets/(ind.·h)) in summer, within the range reported in previous studies. Higher production rates of fecal pellets occurred at stations with higher chlorophyll a concentrations, and production rates of copepods of size 500-1 000 μm greater than copepods >1 000 μm during both cruises. The potential export flux of fecal pellets was slightly higher in summer (mean=68.95±14.37 mg C/(m2·d)) than spring (mean=52.08±11.33 mg C/(m2·d)) owing to higher summer copepod abundances. To our knowledge, this study is the first of its kind in the Changjiang estuary, and it confirms the significant role of copepod fecal pellets in local carbon export.
Key words:    fecal pellets|copepods|production rates|carbon export|Changjiang (Yangtze) River estuary   
Received: 2017-02-27   Revised:
Tools
PDF (518 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by GUO Shujin
Articles by SUN Xiaoxia
References:
Ayukai T, Nishizawa S. 1986. Defecation rate as a possible measure of ingestion rate of Calanus pacificus (Copepoda:Clanoida). Bull. Plankton. Soc. Jpn., 33(1):3-10.
Bathmann U V, Noji T T, von Bodungen B. 1990. Copepod grazing potential in late winter in the Norwegian Sea-a factor in the control of spring phytoplankton growth?Mar. Ecol. Prog. Ser., 60:225-233.
Bathmann U V, Noji T T, Voss M, Peinert R. 1987. Copepod fecal pellets:abundance, sedimentation and content at a permanent station in the Norwegian Sea in May/June 1986. Mar. Ecol. Prog. Ser., 38:45-51.
Beaumont K L, Plummer A J, Hosie G W, Ritz D A. 2001.Production and fate of faecal pellets during summer in an East Antarctic fjord. Hydrobiologia, 453-454(1):55-65.
Belcher A, Iversen M, Manno C, Henson S A, Tarling G A, Sanders R. 2016. The role of particle associated microbes in remineralization of fecal pellets in the upper mesopelagic of the Scotia Sea, Antarctica. Limnol.Oceanogr., 61(3):1 049-1 064.
Bienfang P K, Harrison P J. 1984. Sinking-rate response of natural assemblages of temperate and subtropical phytoplankton to nutrient depletion. Mar. Biol., 83(3):293-300.
Bienfang P K. 1981. SETCOL-a technologically simple and reliable method for measuring phytoplankton sinking rates. Can. J. Fish. Aquat. Sci., 38(10):1 289-1 294.
Butler M, Dam H G. 1994. Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated phytoplankton bloom conditions:implications for vertical fluxes. Mar. Ecol. Prog. Ser., 114:81-91.
Carroll M L, Miquel J C, Fowler S W. 1998. Seasonal patterns and depth-specific trends of zooplankton fecal pellet fluxes in the northwestern Mediterranean Sea. Deep Sea Res. Part I, 45(8):1 303-1 318.
Chen H J, Liu G X. 2006. Zooplankton community structure in Yangtze River Estuary and adjacent sea area in summer 2006. J. Beijing Norm. Univ. (Nat. Sci.), 45(4):393-398.(in Chinese with English abstract)
Dagg M J, Urban-Rich J, Peterson J O. 2003. The potential contribution of fecal pellets from large copepods to the flux of biogenic silica and particulate organic carbon in the Antarctic Polar Front region near 170°W. Deep Sea Res. Part Ⅱ, 50(3-4):675-691.
Deibel D. 1990. Still-water sinking velocity of fecal material from the pelagic tunicate Dolioletta gegenbauri. Mar.Ecol. Prog. Ser., 62:55-60.
Edler L. 1979. Recommendations on methods for marine biological studies in the Baltic Sea. In:Phytoplankton and Chlorophyll. The Baltic Marine Biologists, Malmö, Sweden. p.1-38.
Eppley R W, Reid F M H, Stickland J D H. 1970. Estimates of phytoplankton crop size, growth rate, and primary production. In:Strickland J D H ed. The Ecology of the Plankton off La Jolla California in the Period April Through September, 1967. Scripps Institution of Oceanography, La Jolla, California. p.33-42.
Frangoulis C, Belkhiria S, Goffart A, Hecq J H. 2001.Dynamics of copepod faecal pellets in relation to a Phaeocystis dominated phytoplankton bloom:characteristics, production and flux. J. Plankton Res., 23(1):75-88.
Gleiber M R, Steinberg D K, Schofield O M E. 2015. Copepod summer grazing and fecal pellet production along the Western Antarctic Peninsula. J. Plankton Res., 38(3):732-750.
González H E, González S R, Brummer J G. 1994. Short-term sedimentation pattern of zooplankton, faeces and microplankton at a permanent station in the Bjørnafjorden(Norway) during April-May 1992. Mar. Ecol. Prog. Ser., 105:31-45.
González H E, Hebbeln D, Iriarte J L, Marchant M. 2004.Downward fluxes of faecal material and microplankton at 2300 m depth in the oceanic area off Coquimbo (30°S), Chile, during 1993-1995. Deep Sea Res. Part Ⅱ, 51(20-21):2 457-2 474.
González H E, Ortiz V C, Sobarzo M. 2000. The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23°S), before and during the 1997-1998 El Niño. J. Plankton Res., 22(3):499-529.
Gowing M M, Garrison D L, Kunze H B, Winchell C J. 2001.Biological components of Ross Sea short-term particle fluxes in the austral summer of 1995-1996. Deep Sea. Res.Pert I, 48(12):2 645-2 671.
Guo S J, Sun J, Zhao Q B, Feng Y Y, Huang D J, Liu S M. 2016. Sinking rates of phytoplankton in the Changjiang(Yangtze River) estuary:a comparative study between Prorocentrum dentatum and Skeletonema dorhnii bloom.J. Mar. Sys., 154:5-14.
Hernández-León S, Almeida C, Yebra L, Arístegui J. 2002.Lunar cycle of zooplankton biomass in subtropical waters:biogeochemical implications. J. Plankton Res., 24(9):935-939.
Iversen M H, Poulsen L K. 2007. Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona similis. Mar.Ecol. Prog. Ser., 350:79-89.
Juul-Pedersen T, Nielsen T G, Michel C, Møller E F, Tiselius P, Thor P, Olesen M, Selander E, Gooding S. 2006.
Sedimentation following the spring bloom in Disko Bay, West Greenland, with special emphasis on the role of copepods. Mar. Ecol. Prog. Ser., 314:239-255.
Lampitt R S, Noji T, von Bodungen B. 1990. What happens to zooplankton faecal pellets? Implications for material flux.Mar. Biol., 104(1):15-23.
Lane P V Z, Smith S L, Urban J L, Biscaye P E. 1994. Carbon flux and recycling associated with zooplanktonic fecal pellets on the shelf of the Middle Atlantic Bight. Deep Sea Res. Part Ⅱ, 41(2-3):437-457.
Manno C, Stowasser G, Enderlein P, Fielding S, Tarling G A. 2015. The contribution of zooplankton faecal pellets to deep-carbon transport in the Scotia Sea (Southern Ocean).Biogeosciences, 12(6):1 955-1 965.
Martens P, Krause M. 1990. The fate of faecal pellets in the North Sea. Helgol. Meeresunt., 44(1):9-19.
Mauchline J. 1998. The biology of calanoid copepods. In:Mauchline J ed. Advances in Marine Biology. Academic Press, San Diego, California. p.710-711.
Mayor D J, Sanders R, Giering S L C, Anderson T R. 2014.Microbial gardening in the ocean's twilight zone:detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus. BioEssays, 36(12):1 132-1 137.
Møller E F, Borg C M A, Jónasdóttir S H, Satapoomin S, Jaspers C, Nielsen T G. 2011. Production and fate of copepod fecal pellets across the southern Indian Ocean.Mar. Biol., 158(3):677-688.
Morales C E, Harris R P, Head R N, Tranter P R G. 1993.Copepod grazing in the oceanic northeast Atlantic during a 6 week drifting station:the contribution of size classes and vertical migrants. J. Plankton Res., 15(2):185-212.
Ning X R, Shi J X, Cai Y M, Liu C G. 2004. Biological productivity front in the Changjiang Estuary and the Hangzhou Bay and its ecological effects. Acta Oceanol.Sinica, 26(6):96-106. (in Chinese with English abstract)
Pasternak A, Arashkevich E, Riser C W, Ratkova T, Wassmann P. 2000. Seasonal variation in zooplankton and suspended faecal pellets in the subarctic Norwegian Baisfjorden, in 1996. Sarsia, 85(5-6):439-452.
Patonai K, El-Shaffey H, Paffenhöfer G A. 2011. Sinking velocities of fecal pellets of doliolids and calanoid copepods. J. Plankton Res., 33(7):1 146-1 150.
Poulsen L K, Kiørboe T. 2006. Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods. Mar. Ecol. Prog. Ser., 323:195-204.
Riebesell U, Reigstad M, Wassmann P, Noji T, Passow U. 1995. On the trophic fate of Phaeocystis pouchetii(hariot):VI. Significance of Phaeocystis-derived mucus for vertical flux. Neth. J. Sea Res., 33(2):193-203.
Small L F, Fowler S W, Ünlü M Y. 1979. Sinking rates of natural copepod fecal pellets. Mar. Biol., 51(3):233-241.
Sun J, Liu D Y. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res., 25(11):1 331-1 346.
Svensen C, Wexels Riser C W, Reigstad M, Seuthe L. 2012.Degradation of copepod faecal pellets in the upper layer:role of microbial community and Calanus finmarchicus.Mar. Ecol. Prog. Ser., 462:39-49.
Tsuda A, Nemoto T. 1990. The effect of food concentration on the fecal pellet size of the marine copepod Pseudocalanus newmani frost. Bull. Plankton Soc. Jpn., 37:83-90.
Turner J T. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol., 27:57-102.
Turner J T. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog.Oceanogr., 130:205-248.
Urban-Rich J L. 1997. Latitudinal variations in the contribution by copepod fecal pellets to organic carbon and amino acid flux. University of Maryland, College Park, USA. p.188-189.
Urban-Rich J, Nordby E, Andreassen I J, Wassman P, Høisæter T. 1999. Contribution by mezooplankton focal pellets to the carbon flux on Nordvestkbanken, north Norwegian shelf in 1994. Sarsia, 84(3-4):253-264.
Utermöhl H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Theor. Angew.Limnol., 9:1-38.
Verity P G, Smetacek V. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar.Ecol. Prog. Ser., 130:177-293.
Viitasalo M, Rosenberg M, Heiskanen A S, Koski M. 1999.Sedimentation of copepod fecal material in the coastal northern Baltic Sea:where did all the pellets go? Limnol.Oceanogr., 44(6):1 388-1 399.
Wassmann P, Hansen L, Andreassen I J, Wexels Riser C W, Urban-Rich J, Båmstedt U. 1999. Distribution and sedimentation of faecal on the Nordvestbanken shelf, northern Norway, in 1994. Sarsia, 84(3-4):239-252.
Wassmann P. 1998. Retention versus export food chains:processes controlling sinking loss from marine pelagic systems. Hydrobiologia, 363(1-3):29-57.
Welschmeyer N A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments.Limnol. Oceanogr., 39(8):1 985-1 992.
Wexels Riser C W, Reigstad M, Wassmann P, Arashkevich E, Falk-Petersen S. 2007. Export or retention? Copepod abundance, faecal pellet production and vertical flux in the marginal ice zone through snap shots from the northern Barents Sea. Polar Biol., 30(6):719-730.
Wexels Riser C W, Wassmann P, Olli K, Arashkevich E. 2001.Production, retention and export of zooplankton faecal pellets on and off the Iberian shelf, north-west Spain.Prog. Oceanogr., 51(2-4):423-441.
Wexels Riser C W, Wassmann P, Olli K, Pasternak A, Arashkevich E. 2002. Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea. J. Mar. Sys., 38(1-2):175-188.
Wexels Riser C W, Wassmann P, Reigstad M, Seuthe L. 2008.Vertical flux regulation by zooplankton in the northern Barents Sea during Arctic spring. Deep Sea Res. Part Ⅱ, 55(20-21):2 320-2 329.
Wilson S E, Steinberg D K, Buesseler K O. 2008. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean.Deep Sea Res. Part Ⅱ, 55(14-15):1 636-1 647.
Xu Z L, Hong B, Zhu M Y, Chen Y Q. 2003. Ecological characteristics of zooplankton in frequent HAB areas of the East China Sea in spring. Chin. J. Appl. Ecol., 14(7):1 081-1 085. (in Chinese with English abstract)
Xu Z L, Shen X Q, Ma S W. 2005. Ecological characters of zooplankton dominant species in the waters near the Changjiang estuary in spring and summer. Mar. Sci., 29(12):13-19. (in Chinese with English abstract)
Yoon W D, Kim S K, Han K N. 2001. Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic. Mar. Biol., 139(5):923-928.
Zhai W D, Dai M H. 2009. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River)Estuary, East China Sea. Mar. Chem., 117(1-4):2-10.
Copyright © Haiyang Xuebao