Cite this paper:
Kok-Keong LEE, Phaik-Eem LIM, Sze-Wan POONG, Chiew-Yen WONG, Siew-Moi PHANG, John BEARDALL. Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress[J]. Journal of Oceanology and Limnology, 2018, 36(4): 1266-1279

Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress

Kok-Keong LEE1,2, Phaik-Eem LIM1, Sze-Wan POONG1, Chiew-Yen WONG3,4, Siew-Moi PHANG1,5, John BEARDALL6
1 Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia;
2 Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia;
3 School of Health Sciences, International Medical University, 57000 Kuala Lumpur, Malaysia;
4 National Antarctic Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia;
5 Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia;
6 School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
Abstract:
Elevated temperatures as a consequence of global warming have significant impacts on the adaptation and survival of microalgae which are important primary producers in many ecosystems. The impact of temperature on the photosynthesis of microalgae is of great interest as the primary production of algal biomass is strongly dependent on the photosynthetic rates in a dynamic environment. Here, we examine the effects of elevated temperature on Chlorella strains originating from different latitudes, namely Antarctic, Arctic, temperate and tropical regions. Chlorophyll fluorescence was used to assess the photosynthetic responses of the microalgae. Rapid light curves (RLCs) and maximum quantum yield (Fv/Fm) were recorded. The results showed that Chlorella originating from different latitudes portrayed different growth trends and photosynthetic performance. The Chlorella genus is eurythermal, with a broad temperature tolerance range, but with strain-specific characteristics. However, there was a large overlap between the tolerance range of the four strains due to their "eurythermal adaptivity". Changes in the photosynthetic parameters indicated temperature stress. The ability of the four strains to reactivate photosynthesis after inhibition of photosynthesis under high temperatures was also studied. The Chlorella strains were shown to recover in terms of photosynthesis and growth (measured as Chl a) when they were returned to their ambient temperatures. Polar strains showed faster recovery in their optimal temperature compared to that under the ambient temperature from which they were isolated.
Key words:    Antarctic|Arctic|Fv/Fm|microalgae|pigments|recovery   
Received: 2017-03-28   Revised:
Tools
PDF (475 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Kok-Keong LEE
Articles by Phaik-Eem LIM
Articles by Sze-Wan POONG
Articles by Chiew-Yen WONG
Articles by Siew-Moi PHANG
Articles by John BEARDALL
References:
Anning T, Harris G, Geider R J. 2001. Thermal acclimation in the marine diatom Chaetoceros calcitrans(Bacillariophyceae). Eur. J. Phycol., 36(3):233-241, https://doi.org/10.1080/09670260110001735388.
Armond P A, Björkman O, Staehelin L A. 1980. Dissociation of supramolecular complexes in chloroplast membranes A manifestation of heat damage to the photosynthetic apparatus. Biochim. Biophys. Acta, 601:433-442.
Bukhov N G, Carpentier R. 2000. Heterogeneity of photosystem Ⅱ reaction centers as influenced by heat treatment of barley leaves. Physiol. Plantarum, 110(2):279-285, https://doi.org/10.1034/j.1399-3054.2000.110219.x.
Camejo D, Rodríguez P, Morales MA, Dell'Amico J M,Torrecillas A, Alarcón J J. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol., 162(3):281-289.
Campbell S J, McKenzie L J, Kerville S P. 2006. Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. J. Exp. Mar. Biol. Ecol., 330(2):455-468, https://doi.org/10.1016/j.jembe.2005.09.017.
Cao K W, He M L, Yang W N, Chen B, Luo W, Zou S M, Wang C H. 2016. The eurythermal adaptivity and temperature tolerance of a newly isolated psychrotolerant Arctic Chlorella sp. J. Appl. Phycol., 28(2):877-888, https://doi.org/10.1007/s10811-015-0627-0.
Chu W L, See Y C, Phang S M. 2009. Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J. Appl. Phycol., 21(6):641-648, https://doi.org/10.1007/s10811-008-9396-3.
Davison I R. 1991. Environmental effects on algal photosynthesis:temperature. J. Phycol., 27(1):2-8, https://doi.org/10.1111/j.0022-3646.1991.00002.x.
Defew E C, Perkins R G, Paterson D M. 2004. The influence of light and temperature interactions on a natural estuarine microphytobenthic assemblage. Biofilms, 1(1):21-30, https://doi.org/10.1017/S1479050503001054.
Eggert A, Raimund S, Michalik D, West J, Karsten U. 2007.Ecophysiological performance of the primitive red alga Dixoniella grisea (Rhodellophyceae) to irradiance, temperature and salinity stress:growth responses and the osmotic role of mannitol. Phycologia, 46(1):22-28, https://doi.org/10.2216/06-12.1.
Falkowski P G, Raven J A. 2013. Aquatic Photosynthesis:Second Edition. Princeton University Press, Princeton, USA.
Genty B, Briantais J M, Baker N R. 1989. The relationship between the quantum yield of photosynthetic electrontransport and quenching of chlorophyll fluorescence.Biochim. Biophys. Acta, 990(1):87-92, https://doi.org/10.1016/S0304-4165(89)80016-9.
Georgieva K, Yordanov I. 1994. Temperature dependence of photochemical and non-photochemical fluorescence quenching in intact pea leaves. J. Plant Physiol., 144(6):754-759.
Harrison W G, Platt T. 1986. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biol., 5(3):153-164, https://doi.org/10.1007/Bf00441695.
IPCC. 2007. Climate Change 2007:Synthesis Report.Contribution of Working Groups I, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
Jassby A D, Platt T. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21(4):540-547.
Jensen S, Knutsen G. 1993. Influence of light and temperature on photoinhibition of photosynthesis in Spirulina platensis. J. Appl. Phycol., 5(5):495-504, https://doi.org/10.1007/Bf02182508.
Juneau P, Green B R, Harrison P J. 2005. Simulation of PulseAmplitude-Modulated (PAM) fluorescence:limitations of some PAM-parameters in studying environmental stress effects. Photosynthetica, 43(1):75-83, https://doi.org/10.1007/s11099-005-5083-7.
Kirk J T O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge. p.509.
Lakeman M B, von Dassow P, Cattolico R A. 2009. The strain concept in phytoplankton ecology. Harmful Algae, 8(5):746-758, https://doi.org/10.1016/j.hal.2008.11.011.
Lavaud J, Rousseau B, Etienne A L. 2004. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J. Phycol., 40(1):130-137, https://doi.org/10.1046/j.1529-8817.2004.03026.x.
Lee T C, Hsu B D. 2013. Characterization of the decline and recovery of heat-treated Scenedesmus vacuolatus. Bot.Stud., 54:3, https://doi.org/Artn310.1186/1999-3110-54-3.
Levasseur M E, Morissette J C, Popovic R, Harrison P J. 1990.Effects of long term exposure to low temperature on the photosynthetic apparatus of Dunaliella tertiolecta(Chlorophyceae). J. Phycol., 26(3):479-484, https://doi.org/10.1111/j.0022-3646.1990.00479.x.
Lim S L, Chu W L, Phang S M. 2010. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour.Technol., 101(19):7 314-7 322, https://doi.org/10.1016/j.biortech.2010.04.092.
Long S P, Humphries S, Falkowski P G. 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol.Plant Mol. Biol., 45(1):633-662, https://doi.org/10.1146/annurev.pp.45.060194.003221.
Luder U H, Wiencke C, Knoetzel J. 2002. Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta):a study to simulate Antarctic winter sea ice cover. J. Phycol., 38(5):904-913, https://doi.org/10.1046/j.1529-8817.2002.t01-1-01071.x.
Lukeš M, Procházková L, Shmidt V, Nedbalová L, Kaftan D. 2014. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae). FEMS Microbiol. Ecol., 89(2):303-315, https://doi.org/10.1111/1574-6941.12299.
MacIntyre H L, Sharkey T D, Geider R J. 1997. Activation and deactivation of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) in three marine microalgae.Photosynth. Res., 51(2):93-106, https://doi.org/10.1023/A:1005755621305.
Marija S, Dieter H. 2014. Sensitivity of photosynthesis to UV radiation in several Cosmarium strains(Zygnematophyceae, Streptophyta) is related to their geographical distribution. Photochem. Photobiol. Sci., 13(7):1 066-1 081, https://doi.org/10.1039/c3pp50192b.
Moharikar S, D'Souza J S, Kulkarni A B, Rao B J. 2006.Apoptotic-like cell death pathway is induced in unicellular chlorophyte Chlamydomonas reinhardtii (Chlorophyceae)cells following UV irradiation:detection and functional analyses. J. Phycol., 42(2):423-433, https://doi.org/10.1111/j.1529-8817.2006.00207.x.
Morgan-Kiss R M, Priscu J C, Pocock T, Gudynaite-Savitch L, Huner N P A. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev., 70(1):222-252, https://doi.org/10.1128/MMBR.70.1.222-252.2006.
Müller P, Li X P, Niyogi K K. 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol., 125(4):1 558-1 566, https://doi.org/10.1104/pp.125.4.1558.
Ng F L, Phang S M, Periasamy V, Yunus K, Fisher A C. 2014.Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS One, 9(5):e97643, https://doi.org/10.1371/journal.pone.0097643.
Nichols H W, Bold H C. 1965. Trichosarcina polymorpha gen.et sp. nov. J. Phycol., 1(1):34-38.
Phang S M. 2004. The University of Malaya Algae Culture Collection (UMACC) and potential applications of a unique Chlorella from the collection. Jap. J. Phycol., 52:221-224.
Phillips L G, Cowan A K, Rose P D, Logie M R R. 1995.Operation of the xanthophyll cycle in non-stressed and stressed cells of Dunaliella salina teod. In response to diurnal changes in incident irradiation:a correlation with intracellular β-carotene content. J. Plant Physiol., 146(4):547-553, https://doi.org/10.1016/s0176-1617(11)82022-5.
Platt T, Gallegos C L, Harrison W G. 1980. Photoinhibition of photosynthesis in natural assemblages of marinephytoplankton. J. Mar. Res., 38(4):687-701.
Pospíšil P, Tyystjärvi E. 1999. Molecular mechanism of hightemperature-induced inhibition of acceptor side of Photosystem Ⅱ. Photosynth. Res., 62(1):55-66, https://doi.org/10.1023/A:1006369009170.
Ralph P J, Gademann R. 2005. Rapid light curves:a powerful tool to assess photosynthetic activity. Aquat. Bot., 82(3):222-237, https://doi.org/10.1016/j.aquabot.2005.02.006.
Ralph P J. 1998. Photosynthetic response of laboratorycultured Halophila ovalis to thermal stress. Mar. Ecol.Prog. Ser., 171:123-130.
Rautenberger R, Huovinen P, Gómez I. 2015. Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae. Mar. Biol., 162(5):1 087-1 097, https://doi.org/10.1007/s00227-015-2651-7.
Reeves S, McMinn A, Martin A. 2011. The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms. Polar Biol., 34(7):1 019-1 032, https://doi.org/10.1007/s00300-011-0961-x.
Rivas C, Navarro N, Huovinen P, Gómez I. 2016. Photosynthetic UV stress tolerance of the Antarctic snow alga Chlorella sp. modified by enhanced temperature? Rev. Chil. Hist.Nat., 89:7, https://doi.org/10.1186/s40693-016-0050-1.
Salleh S, McMinn A, Mohammad M, Yasin Z, Tan S. 2010.Effects of temperature on the photosynthetic parameters of antarctic benthic microalgal community. ASM Sci. J., 4(1):81-88.
Salleh S, McMinn A. 2011. The effects of temperature on the photosynthetic parameters and recovery of two temperate benthic microalgae, Amphora cf. coffeaeformis and Cocconeis cf. sublittoralis (Bacillariophyceae). J. Phycol., 47(6):1 413-1 424, https://doi.org/10.1111/j.1529-8817.2011.01079.x.
Schreiber U, Endo T, Mi H L, Asada K. 1995. Quenching analysis of chlorophyll fluorescence by the saturation pulse method:particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol., 36(5):873-882.
Schreiber U. 2004. Pulse-amplitude-modulation (PAM)fluorometry and saturation pulse method. In:Papageorgiou G, Govindjee eds. Chlorophyll a Fluorescence:a Signature of Photosynthesis. Advances in Photosynthesis and Respiration Series. Kluwer Academic Publishers, Dordrecht, the Netherlands. p.279-319.
Serôdio J, Vieira S, Cruz S, Coelho H. 2006. Rapid lightresponse curves of chlorophyll fluorescence in microalgae:relationship to steady-state light curves and nonphotochemical quenching in benthic diatom-dominated assemblages. Photosynth. Res., 90(1):29-43, https://doi.org/10.1007/s11120-006-9105-5.
Song Y P, Chen Q Q, Ci D, Shao X N, Zhang D Q. 2014.Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol., 14:111, https://doi.org/10.1186/1471-2229-14-111.
Strickland J D, Parsons T R. 1972. A Practical Handbook of Seawater Analysis. 2nd edn. Fisheries Research Board of Canada, Ottowa, Canada.
Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H. 2004. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol., 45(2):251-255, https://doi.org/10.1093/pcp/pch028.
Teoh M L, Chu W L, Marchant H, Phang S M. 2004. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol., 16(6):421-430, https://doi.org/10.1007/s10811-004-5502-3.
Teoh M L, Phang S M, Chu W L. 2013. Response of Antarctic, temperate, and tropical microalgae to temperature stress.J. Appl. Phycol., 25(1):285-297, https://doi.org/10.1007/s10811-012-9863-8.
Tóth S Z, Schansker G, Garab G, Strasser R J. 2007.Photosynthetic electron transport activity in heat-treated barley leaves:the role of internal alternative electron donors to photosystem Ⅱ. Biochim. Biophys. Acta, 1 767(4):295-305, https://doi.org/10.1016/j.bbabio.2007.02.019.
Vincent W F. 2007. Cold tolerance in cyanobacteria and life in the cryosphere. In:Seckbach J ed. Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, Netherlands. p.287-301.
Vonshak A, Borowitzka M. 1991. Laboratory manual:research seminar and workshop on mass cultures of microalgae.Slipakorn University, Thailand. 40p.
Wen X G, Gong H M, Lu C M. 2005. Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem Ⅱ but not to photosystem I in a cyanobacterium Spirulina platensis. Plant Physiol.Biochem., 43(4):389-395, https://doi.org/10.1016/j.plaphy.2005.03.001.
Wong C Y, Teoh M L, Phang S M, Lim P E, Beardall J. 2015.Interactive effects of temperature and UV radiation on photosynthesis of Chlorella strains from polar, temperate and tropical environments:differential impacts on damage and repair. PLoS One, 10(10):e0139469, https://doi.org/10.1371/journal.pone.0139469.
Yamamoto Y. 2016. Quality control of photosystem Ⅱ:the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front Plant Sci., 7:1 136.
Copyright © Haiyang Xuebao