Cite this paper:
MA Liping, LIU Hui, SU Laijin, ZHAO Feng, ZHOU Deqing, DUAN Delin. Histo-blood group antigens in Crassostrea gigas and binding profiles with GII.4 Norovirus[J]. Journal of Oceanology and Limnology, 2018, 36(4): 1383-1391

Histo-blood group antigens in Crassostrea gigas and binding profiles with GII.4 Norovirus

MA Liping1,2,3, LIU Hui2, SU Laijin2, ZHAO Feng2, ZHOU Deqing2, DUAN Delin1,3
1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
3 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:
Noroviruses (NoVs) are the main cause of viral gastroenteritis outbreaks worldwide, and oysters are the most common carriers of NoV contamination and transmission. NoVs bind specifically to oyster tissues through histo-blood group antigens (HBGAs), and this facilitates virus accumulation and increases virus persistence in oysters. To investigate the interaction of HBGAs in Pacific oysters with GⅡ.4 NoV, we examined HBGAs with ELISAs and investigated binding patterns with oligosaccharide-binding assays using P particles as a model of five GⅡ.4 NoV capsids. The HBGAs in the gut and gills exhibited polymorphisms. In the gut, type A was detected (100%), whereas type Leb (91.67%) and type A (61.11%) were both observed in the gills. Moreover, we found that seasonal NoV gastroenteritis outbreaks were not significantly associated with the specific HBGAs detected in the oyster gut and gills. In the gut, we found that strain-2006b and strain-96/96US bound to type A and H1 but only weakly bound to type Leb; in contrast, the Camberwell and Hunter strains exhibited weak binding to types H1 and Ley, and strain-Sakai exhibited no binding to any HBGA type. In the gills, strain-96/96US and strain-2006b bound to type Leb but only weakly bound to type H1; strains Camberwell, Hunter, and Sakai did not bind to oyster HBGAs. Assays for oligosaccharide binding to GⅡ.4 NoV P particles showed that strain-95/96US and strain-2006b strongly bound to type A, B, H1, Leb, and Ley oligosaccharides, while strains Camberwell and Hunter showed weak binding ability to type H1 and Ley oligosaccharides and strain-Sakai showed weak binding ability to type Leb and Ley oligosaccharides. Our study presents new information and enhances understanding about the mechanism for NoV accumulation in oysters. Further studies of multiple NoV-tissue interactions might assist in identifying new or improved strategies for minimizing contamination, including HBGA-based attachment inhibition or depuration.
Key words:    Crassostrea gigas|norovirus|histo-blood group antigen|binding   
Received: 2017-01-22   Revised:
Tools
PDF (569 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by MA Liping
Articles by LIU Hui
Articles by SU Laijin
Articles by ZHAO Feng
Articles by ZHOU Deqing
Articles by DUAN Delin
References:
Anbazhagi S, Kamatchiammal S. 2010. A comparative study for the efficient detection of norovirus from drinking water by RT-PCR and real-time PCR. Water Air Soil Poll., 213(1-4):71-84.
Chung H, Sobsey M D. 1993. Comparative survival of indicator viruses and enteric viruses in seawater and sediment. Water Sci. Technol., 27(3-4):425-428.
DePaola A, Jones J L, Woods J, Burkhardt Ⅲ W, Calci K R, Krantz J A, Bowers J C, Kasturi K, Byars R H, Jacobs E, Williams-Hill D, Nabe K. 2010. Bacterial and viral pathogens in live oysters:2007 United States market survey. Appl. Environ. Microbiol., 76(9):2 754-2 768.
Fankhauser R L, Monroe S S, Noel J S, Humphrey C D, Bresee J S, Parashar U D, Ando T, Glass R I. 2002. Epidemiologic and molecular trends of "Norwalk-like viruses" associated with outbreaks of gastroenteritis in the United States. J. Infect. Dis., 186(1):1-7.
Huang P W, Farkas T, Zhong W M, Tan M, Thornton S, Morrow A L, Jiang X. 2005. Norovirus and histo-blood group antigens:demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J. Virol., 79(11):6 714-6 722.
Le Guyader F S, Loisy F, Atmar R L, Hutson A M, Estes M K, Ruvoën-Clouet N, Pommepuy M, Le Pendu J. 2006.Norwalk virus-specific binding to oyster digestive tissues.Emerg. Infect. Dis., 12(6):931-936.
Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R. 2003. Human susceptibility and resistance to Norwalk virus infection.Nat. Med., 9(5):548-553.
Lipp E K, Kurz R, Vincent R, Rodriguez-Palacios C, Farrah S R, Rose J B. 2001. The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuaries, 24(2):266-276.
Love D C, Lovelace G L, Sobsey M D. 2010. Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria)by depuration. Int. J. Food Microbiol., 143(3):211-217.
Lowther J A, Gustar N E, Hartnell R E, Lees D N. 2012.Comparison of norovirus RNA levels in outbreak-related oysters with background environmental levels. J. Food Protect., 75(2):389-393.
Ma L P, Su L J, Zhao F, Zhou D Q. 2015. Type-like of HBGAs in Crassostrea gigas and its binding properties with norovirus P particles. J. Food Saf. Qual., 6(10):3 970-3 975. (in Chinese with English abstract)
Ma L P, Zhao F, Yao L, Li X G, Zhou D Q, Zhang R L. 2013.The presence of genogroup Ⅱ norovirus in retail shellfish from seven coastal cities in China. Food Environ. Virol., 5(2):81-86.
Maalouf H, Schaeffer J, Parnaudeau S, Le Pendu J, Atmar R L, Crawford S E, Le Guyader F S. 2011. Strain-dependent norovirus bioaccumulation in oysters. Appl. Environ.Microbiol., 77(10):3 189-3 196.
Maalouf H, Zakhour M, Le Pendu J, Le Saux J C, Atmar R L, Le Guyader F S. 2010. Distribution in tissue and seasonal variation of norovirus genogroup I and Ⅱ ligands in oysters. Appl. Environ. Microbiol., 76(16):5 621-5 630.
Myrmel M, Berg E M M, Rimstad E, Grinde B. 2004. Detection of enteric viruses in shellfish from the Norwegian coast.Appl. Environ. Microbiol., 70(5):2 678-2 684.
Nishida T, Nishio O, Kato M, Chuma T, Kato H, Iwata H, Kimura H. 2007. Genotyping and quantitation of noroviruses in oysters from two distinct sea areas in Japan. Microbiol. Immunol., 51(2):177-184.
Prasad B V V, Hardy M E, Dokland T, Bella J, Rossmann M G, Estes M K. 1999. X-ray crystallographic structure of the Norwalk virus capsid. Science, 286(5438):287-290.
Provost K, Dancho B A, Ozbay G, Anderson R S, Richards G P, Kingsley D H. 2011. Hemocytes are sites of enteric virus persistence within oysters. Appl. Environ. Microbiol., 77(23):8 360-8 369.
Rodriguez-Manzano J, Hundesa A, Calgua B, Carratala A, de Motes C M, Rusiñol M, Moresco V, Ramos A P, MartínezMarca F, Calvo M, Barardi C R M, Girones R, Bofill-Mas S. 2014. Adenovirus and norovirus contaminants in commercially distributed shellfish. Food Environ. Virol., 6(1):31-41.
Savini G, Casaccia C, Barile N B, Paoletti M, Pinoni C. 2009.Norovirus in bivalve molluscs:A study of the efficacy of the depuration system. Vet. Ital., 45(4):535-539.
Schaeffer J, Le Saux J C, Lora M, Atmar R L, Le Guyader F S. 2013. Norovirus contamination on French marketed oysters. Int. J. Food Microbiol., 166(2):244-248.
Siebenga J J, Vennema H, Zheng D P, Vinjé J, Lee B E, Pang X L, Ho E C M, Lim W, Choudekar A, Broor S, Halperin T, Rasool N B G, Hewitt J, Greening G E, Jin M, Duan Z J, Lucero Y, O'Ryan, M, Hoehne M, Schreier E, Ratcliff R M, White R A, Iritani N, Reuter G, Koopmans M. 2009.Norovirus illness is a global problem:emergence and spread of norovirus GⅡ.4 variants, 2001-2007. J. Infect.Dis., 200(5):802-812.
Sinton L W, Davies-Colley R J, Bell R G. 1994. Inactivation of enterococci and fecal coliforms from sewage and meatworks effluents in seawater chambers. Appl. Environ.Microbiol., 60(6):2 040-2 048.
Tan M, Jiang X. 2005a. Norovirus and its histo-blood group antigen receptors:an answer to a historical puzzle. Trends Microbiol., 13(6):285-293.
Tan M, Jiang X. 2005b. The P domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J. Virol., 79(22):14 017-14 030.
Tan M, Jiang X. 2007. Norovirus-host interaction:implications for disease control and prevention. Expert Rev. Mol. Med., 9(19):1-22.
Tan M, Zhong W M, Song D, Thornton S, Jiang X. 2004. E.coli-expressed recombinant norovirus capsid proteins maintain authentic antigenicity and receptor binding capability. J. Med. Virol., 74(4):641-649.
Tian P, Bates A H, Jensen H M, Mandrell R E. 2006. Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells. Lett. Appl. Microbiol., 43(6):645-651.
Tian P, Engelbrektson A L, Mandrell R E. 2008. Seasonal tracking of histo-blood group antigen expression and norovirus binding in oyster gastrointestinal cells. J. Food.Prot., 71(8):1 696-1 700.
Wang D P, Wu Q P, Kou X X, Yao L, Zhang J M. 2008.Distribution of norovirus in oyster tissues. J. Appl.Microbiol., 105(6):1 966-1 972.
Copyright © Haiyang Xuebao