Cite this paper:
ZHAN Yaoyao, HU Wanbin, DUAN Lizhu, LIU Minbo, ZHANG Weijie, CHANG Yaqing, Li Cong. Effects of seawater acidification on the early development of sea urchin Glyptocidaris crenularis[J]. Journal of Oceanology and Limnology, 2018, 36(4): 1442-1454

Effects of seawater acidification on the early development of sea urchin Glyptocidaris crenularis

ZHAN Yaoyao1, HU Wanbin1, DUAN Lizhu1, LIU Minbo1, ZHANG Weijie1, CHANG Yaqing1, Li Cong2
1 Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China;
2 College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
Abstract:
In this study, we evaluated the effects of CO2-induced seawater acidification on fertilization, embryogenesis and early larval development in the sea urchin Glyptocidaris crenularis, that inhabits subtidal coastal areas in northern China. The range in seawater pH used in experiments was based on the projections of the Intergovernmental Panel on Climate Change (IPCC), to the year 2100. A natural seawater treatment (pHnbs=7.98±0.03) and three laboratory-controlled acidified treatments (OA1, ΔpHnbs=-0.3 units; OA2, ΔpHnbs=-0.4 units; OA3, ΔpHnbs=-0.5 units) were used in experiments. Results show that:(1) there was a negative effect of seawater acidification on fertilization and on the percentage of abnormal fertilized eggs; (2) the size of early cleavage stage embryos decreased in a dose-dependent manner with decreasing pH; (3) both the hatching rate of blastulae and the survival rate of four-armed pluteus larvae decreased as pH declined; (4) larval abnormalities including asymmetrical development, changes in the length of skeletal elements, and corroded spicules were observed in all seawater acidified-treatments compared with the control. These data indicate that seawater acidification has a negative impact on the early development of G. crenularis, and supports the hypothesis that the response of echinoderms to ocean acidification (OA) varies among species. Further research is required to clarify the specific cellular mechanisms involved.
Key words:    seawater acidification|Glyptocidaris crenularis|early development|calcification   
Received: 2016-12-17   Revised:
Tools
PDF (2348 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHAN Yaoyao
Articles by HU Wanbin
Articles by DUAN Lizhu
Articles by LIU Minbo
Articles by ZHANG Weijie
Articles by CHANG Yaqing
Articles by Li Cong
References:
AQSIQ. 2007. GB/T 12763.4-2007 Specifications for oceanographic survey-part 4:survey of chemical parameters in sea water. Standards Press of China, Beijing, China. p.12-13. (in Chinese)
Brennand H S, Soars N, Dworjanyn S A, Davis A R, Byrne M. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One, 5(6):e11372, https://doi.org/10.1371/journal.pone.0011372.
Byrne M, Gonzalez-Bernat M, Doo S, Foo S, Soars N, Lamare M. 2013a. Effects of ocean warming and acidification on embryos and non-calcifying larvae of the invasive sea star Patiriella regularis. Mar. Ecol. Prog. Ser., 473:235-246, https://doi.org/10.3354/meps10058.
Byrne M, Lamare M, Winter D, Dworjanyn S A, Uthicke S. 2013b. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos. Trans. R.Soc. B Biol. Sci., 368(1627):20120439, https://doi.org/10.1098/rstb.2012.0439.
Byrne M, Przeslawski R. 2013. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories. Integr. Comp. Biol., 53(4):582-596, https://doi.org/10.1093/icb/ict049.
Calosi P, Rastrick S P S, Graziano M, Thomas S C, Baggini C, Carter H A, Hall-Spencer J M, Milazzo M, Spicer J I. 2013. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid-base and ion-regulatory abilities. Mar. Pollut. Bull., 73(2):470-484, https://doi.org/10.1016/j.marpolbul.2012.11.040.
Chan K Y K, García E, Dupont S. 2015. Acidification reduced growth rate but not swimming speed of larval sea urchins.Sci. Rep., 5:9764, https://doi.org/10.1038/srep09764.
Chang Y Q, Ding J, Song J, Yang W. 2004. The Research of Biology and Aquaculture in Sea Cucumber and Sea Urchins. China Ocean Press, Beijing, China. p.220-221.(in Chinese)
Chang Y Q, Zhang W J, Zhao C, Song J. 2012. Estimates of heritabilities and genetic correlations for growth and gonad traits in the sea urchin Strongylocentrotus intermedius. Aquacul. Res., 43(2):271-280, https://doi.org/10.1111/j.1365-2109.2011.02825.x.
Dickson A G, Millero F J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res.Pap., 34(10):1 733-1 743, https://doi.org/10.1016/0198-0149(87)90021-5.
Dupont S, Ortega-Martínez O, Thorndyke M. 2010. Impact of near-future ocean acidification on echinoderms.Ecotoxicology, 19(3):449-462, https://doi.org/10.1007/s10646-010-0463-6.
Dupont S, Pörtner H. 2013. Marine science:get ready for ocean acidification. Nature, 498(7455):429, https://doi.org/10.1038/498429a.
Dupont S, Thorndyke M S. 2013. Direct impacts of near-future ocean acidification on sea urchins. In:Fernández-Palacios J M, de Nascimento L, Hernández J C, Clemente S, González A, Díaz-González J P eds. Climate Change Perspective from the Atlantic:Past, Present and Future.Servicio de Publicaciones, Universidad de La Laguna, La Laguna, Spain. p.461-485.
Gonzalez-Bernat M J, Lamare M, Barker M. 2013a. Effects of reduced seawater pH on fertilisation, embryogenesis and larval development in the Antarctic seastar Odontaster validus. Polar Biol., 36(2):235-247, https://doi.org/0.1007/s00300-012-1255-7.
Gonzalez-Bernat M J, Lamare M, Uthicke S, Byrne M. 2013b.Fertilisation, embryogenesis and larval development in the tropical intertidal sand dollar Arachnoides placenta in response to reduced seawater pH. Mar. Biol., 160(8):1 927-1 941, https://doi.org/10.1007/s00227-012-2034-2.
Grosberg R K, Levitan D R. 1992. For adults only? Supplyside ecology and the history of larval biology. Trends Ecol. Evol., 7(4):130-133, https://doi.org/10.1016/0169.
Hammond L M, Hofmann G E. 2012. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO2 seawater conditions. J. Exp.Biol., 215(14):2 445-2 454, https://doi.org/10.1242/jeb.058008.
Hardy N A, Byrne M. 2014. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. Mar. Environ.Res., 102:78-87, https://doi.org/10.1016/j.marenvres.2014.07.007.
Havenhand J N, Buttler F R, Thorndyke M C, Williamson J E. 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr. Biol., 18(15):R651-R652, https://doi.org/10.1016/j.cub.2008.06.015.
IPCC. 2013. Climate change 2013:the physical science basis.In:Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M eds.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, New York, USA.
Lawrence J M. 2013. Sea Urchins:Biology and Ecology. 3rd edn. Elsevier, Amsterdam, The Netherlands.
Liu X L, Chang Y Q, Xiang J H, Cao X B. 2005. Estimates of genetic parameters for growth traits of the sea urchin, Strongylocentrotus intermedius. Aquaculture, 243(1-4):27-32, https://doi.org/10.1016/j.aquaculture.2004.10.014.
Mann K, Wilt F H, Poustka A J. 2010. Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci., 8:33, https://doi.org/10.1186/1477-5956-8-33.
Martin S, Richier S, Pedrotti M L, Dupont S, Castejon C, Gerakis Y, Kerros M E, Oberhänsli F, Teyssié J L, Jeffree R, Gattuso J P. 2011. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. J. Exp. Biol., 214(8):1 357-1 368, https://doi.org/10.1242/jeb.051169.
Mehrbach C, Culberson C H, Hawley J E, Pytkowicx R M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.Limnol. Oceanogr., 18(6):897-907, https://doi.org/10.1007/s10953-013-0094-7.
Moulin L, Catarino A I, Claessens T, Dubois P. 2011. Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Mar. Pollut. Bull., 62(1):48-54, https://doi.org/10.1016/j.marpolbul.2010.09.012.
Pearse J S. 2006. Ecological role of purple sea urchins. Science, 314(5801):940-941.
Schlegel P, Binet M T, Havenhand J N, Doyle C J, Williamson J E. 2015. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol., 218(7):1 084-1 090, https://doi.org/10.1242/jeb.114900.
Stumpp M, Hu M Y, Melzner F, Gutowska M A, Dorey N, Himmerkus N, Holtmann W C, Dupont S T, Thorndyke M C, Bleich M. 2012. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification.Proc. Natl. Acad. Sci. USA, 109(44):18 192-18 197, https://doi.org/10.1073/pnas.1209174109.
Todgham A E, Hofmann G E. 2009. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J. Exp. Biol., 212(16):2 579-2 594, https://doi.org/10.1242/jeb.032540.
Zhan Y Y, Hu W B, Duan L Z, Liu M B, Zhang W J, Chang Y Q, Li C. 2017. Effects of seawater acidification on early development of the sea urchin Hemicentrotus pulcherrimus. Aquacult. Int., 25(2):655-678, https://doi.org/10.1007/s10499-016-0064-3.
Zhan Y Y, Hu W B, Zhang W J, Liu M B, Duan L Z, Huang X Y, Chang Y Q, Li C. 2016. The impact of CO2-driven ocean acidification on early development and calcification in the sea urchin Strongylocentrotus intermedius. Mar.Pollut. Bull., 112(1-2):291-302, https://doi.org/10.1016/j.marpolbul.2016.08.003.
Copyright © Haiyang Xuebao