Cite this paper:
ÖTERLER Burak. Comparative study of epiphytic algal communities on Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud in the shallow Gala Lake (European Part of Turkey)[J]. HaiyangYuHuZhao, 2018, 36(5): 1615-1628

Comparative study of epiphytic algal communities on Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud in the shallow Gala Lake (European Part of Turkey)

ÖTERLER Burak
Faculty of Science Department of Biology, Trakya University, Balkan Campus, 22030, Edirne, Turkey
Abstract:
The aim of this study was to determine the species composition, biodiversity and, relative abundance of epiphytic algae and their relationship with environmental variables on Typha latifolia and Phragmites australis at Lake Gala (National Park). Epiphytic algae were gathered monthly by collecting aquatic plants between March 2014 and November 2014. In the epiphytic flora were a total of 133 taxa were identified, 107 taxa were identified on T. latifolia and 96 were discovered on P. australis. While the mean species richness, species diversity and evenness values of the algae identified on T. latifolia were 46, 1.85 and 0.51 respectively, these values were respectively 43, 1.51 and 0.43 on P. australis. While diatoms were generally dominant, other dominant groups in the epiphytic flora included green algae and blue-green algae. The algae that had the highest relative biovolume on T. latifolia were Spirogyra affinis, Oscillatoria sancta and Gomphonema acuminatum, while the algae that had the highest relative biovolume on P. australis were Epithemia adnata, Oscillatoria sancta and Rhopalodia gibba. Results show that species composition of epiphytic algae was different, but diversity values were similar on all the macrophytes. The hydrological pulse is one of the most important factors determining the physical and chemical environment of the epiphytic algal community. It was found that some environmental factors were highly effective on community distribution in the epiphyton. Additionally, it was observed that some epiphytic algae species had a substrate preference between T. latifolia and P. australis.
Key words:    community structure|epiphytic algae|shallow lake|Typha latifolia|Phragmites australis   
Received: 2017-04-27   Revised:
Tools
PDF (1569 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ÖTERLER Burak
References:
Ács É, Kiss K T, Szabó K, Makk J. 2000. Short-term colonization sequence of periphyton on glass slides in a large river (River Danube, near Budapest). Algological Studies, 100:135-156.
Addinsoft, Xlstat. 2015. Data analysis and statistics with MS Excel®. Addinsoft, NY, USA. xlstat available at http://www.xlstat.com/en/home.
Albay M, Akçaalan R. 2003. Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey.Hydrobiologia, 506(1-3):531-540, https://doi.org/10.1023/B:HYDR.0000008606.69572.f6.
Albay M, Akçaalan R. 2008. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectum ın two turkish lakes with different mixing regimes. Environmental Monitoring and Assessment, 146(1-3):171-181, https://doi.org/10.1007/s10661-007-0069-5.
Algarte V M, Siqueira N S, Murakami E A, Rodrigues L. 2009.Effects of hydrological regime and connectivity on the interannual variation in taxonomic similarity of periphytic algae. Braz. J. Biol., 62(2S):609-616, https://doi.org/10.1590/S1519-69842009000300015.
Anonymous. 2012. İpsala Vision Plan. Trakya Development Agency, 2012. (ın Turkish)
APHA, AWWA, WEF. 2012. 10300 Periphyton. Standard Methods for the Examination of Water and Wastewater. 22nd edn. American Public Health Association, Washington, D.C.
Battarbee R W, Jones V J, Flower R J, Cameron N G, Bennion H, Carvalho L, Juggins S. 2001. Diatoms. In:Smol J P, Birks H J, Last W M eds. Tracking Environmental Change Using Lake Sediments. Volume 3:Terrestrial, Algal, and Siliceous İndicators. Springer, The Netherlands. p.155-202.
Bennion H, Kelly M G, Juggins S, Yallop M L, Burgess A, Jamieson J, Krokowski J. 2014. Assessment of ecological status in UK lakes using benthic diatoms. Freshwater Science, 33(2):639-654, https://doi.org/10.1086/675447.
Bicudo C E M, Menezes M. 2006. Gêneros de algas de águas continentais do Brasil. (Chave de identificação e descrições). 2nd edn. Rıma, São Carlos. p.1-489.
Biolo S, Rodrigues L. 2013. Comparison of the structure of the periphytic community in distinct substrates from a neotropical floodplain. International Research Journal of Plant Science, 4(3):64-75.
Biswas K, Calder C C. 1984. Hand-Book of Common Water and Marsh Plants of India and Burma. p.1-216.
Blanco S, Cejudo-Figueiras C, Álvarez-Blanco I, van Donk E, Gross E M, Hansson L A, Irvine K, Jeppesen E, Kairessalo T, Moss B, Nõges T, Bécares E. 2014. Epiphytic diatoms along environmental gradients in western european shallow lakes. CLEAN-Soil, Air, Water, 42(3):229-235, https://doi.org/10.1002/clen.201200630.
Çamur-Elipek B, Arslan N, Kırgız T, Öterler B, Güher H, Özkan N. 2010. Analysis of benthic macroinvertebrates in relation to environmental variables of Lake Gala, a National Park of Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 10(1):235-243, https://doi.org/10.4194/trjfas.2010.0212.
Cano M G, Casco M A, Claps M C. 2012. Effect of environmental variables on epiphyton in a pampean lake with stable turbid-and clear-water states. Aquatic Biology, 15(1):47-59, https://doi.org/10.3354/ab00409.
Cantonati M, Angeli N, Bertuzzi E, Spitale D, Lange-Bertalot H. 2012. Diatoms in springs of the Alps:spring types, environmental determinants, and substratum. Freshwater Science, 31(2):499-524, https://doi.org/10.1899/11-065.1.
Cattaneo A, Galanti G, Gentinetta S, Romo S. 1998. Epiphytic algae and macro invertebrates on submerged and floatingleaved macrophytes in an Italian lake. Freshwater Biology, 39(4):725-740, https://doi.org/10.1046/j.1365-2427.1998.00325.x.
Chung M H, Lee K S. 2008. Species composition of the epiphytic diatoms on the leaf tissues of three Zostera species distributed on the southern coast of Korea. Algae, 23(1):75-81, https://doi.org/10.4490/ALGAE.2008.23.1.075.
Coops H, Hosper S H. 2002. Water-level management as a tool for the restoration of shallow lakes in the Netherlands.Lake and Reservoir Management, 18(4):293-298, https://doi.org/10.1080/07438140209353935.
Dibble E D, Thomaz S M, Padial A A. 2006. Spatial complexity measured at a multi-scale in three aquatic plant species.Journal of Freshwater Ecology, 21(2):239-247, https://doi.org/10.1080/02705060.2006.9664992.
doa Santos T R, Ferragut C, de Mattos Bicudo C E. 2013. Does macrophyte architecture influence periphyton? Relationships among Utricularia foliosa, periphyton assemblage structure and its nutrient (C, N, P) status. Hydrobiologia, 714(1):71-83, https://doi.org/10.1007/s10750-013-1531-8.
Flynn N J, Snook D L, Wade A J, Jarvie H P. 2002. Macrophyte and periphyton dynamics in a UK Cretaceous chalk stream:the River Kennet, a tributary of the Thames. The Science of the Total Environment, 282-283:143-157, https://doi.org/10.1016/S0048-9697(01)00949-4.
Gaiser E E, Scinto L J, Richards J H, Jayachandran K, Chiders D L, Trexler J C, Jones R D. 2004. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Research, 38(3):507-516, https://doi.org/10.1016/j.watres.2003.10.020.
Goldsborough L G, Robinson G C. 1996. Patterns in wetlands. In:Stevenson R J, Bothwell M L, Lowe R L eds. Algal Ecology:Freshwater Benthic Ecosystems. Academic, London. p.78-117.
Graham L E, Graham J M, Wilcox L W. 2009. Algae. 2nd edn. Prentice-Hall, Inc., Upper Saddle River, New Jersey. p.1-616.
Guariento R D, Caliman A, Esteves F A, Enrich-Prast A, Bozelli R L, Farjalla V F. 2007. Substrate-mediated direct and indirect effects on periphytic biomass and nutrient content in a tropical coastal lagoon, Rio de Janeiro, Brazil. Acta Limnologica Brasiliensia, 19:331-340.
Guiry M D, Guiry G M. 2017. AlgaeBase. World-wide Electronic Publication, National University of Ireland, Galway. http://www.algaebase.org.
Hillebrand H, Dürselen C D, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2):403-424, https://doi.org/10.1046/j.1529-8817.1999.3520403.x.
Hindák F. 2008. Colour Atlas of Cyanophytes. VEDA, Bratislava. p.1-253.
IBM Corp, 2013. IBM SPSS Statistics for Windows (Version 22.0). IBM Corp, Armonk, NY.
King L, Clarke G, Bennion H, Kelly M, Yallop M. 2006. Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology, 18:15-25, https://doi.org/10.1007/s10811-005-9009-3.
Kitner M, Poulíčková A, Hašler P. 2005. Algal colonization process in fishponds of different trophic status. Algological Studies, 115:115-127, https://doi.org/10.1127/1864-1318/2005/0115-0115.
Komarek J, Anagnostidis K. 2005. Cyanoprokariota. 2. Teil:Oscillatoriales. In:Büdel B, Gärtner G, Krienitz L, Schagerl M eds. Süßwasserflora von Mitteleuropa.Elsevier, Heidelberg. p.1-759.
Komarek J, Fott B. 1983. Die binnnengewässer. Band 26, Das phytoplankton des süßwassers. 7 Teil, 1. Hälfte, Chlorophyceae (Grünalgen), Ordnung:Chlorococcales.E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, p.1-1 044.
Krammer K, Lange-Bertalot H. 1986-2004. Bacillariophyceae. 1-4 Teil. Süsswasserflora von Mitteleuropa. In:Ettl H, Gerloff J, Heynig H, Mollenhauer D eds. Fischer-Verlag, Stuttgart, Germany.
Kristiansen J, Preisig H R. 2011. Phylum Chrysophyta (Golden Algae). In:John D M, Whitton B A, Brook A J eds. The Freshwater Algal Flora of the British Isles:An İdentification Guide to Freshwater and Terrestrial Algae. 2nd edn. Cambridge University Press, Cambridge. p.1-878.
Letáková M, Cantonati M, Hašler P, Nicola A, Poulíčková A. 2016. Substrate specificity and fine-scale distribution of epiphytic diatoms in a shallow tarn in the Brenta Dolomites (south-eastern Alps). Plant Ecology and Evolution, 149(2):144-156, https://doi.org/10.5091/plecevo.2016.1206.
Messyasz B, Kuczyńska-Kippen N, Nagengast B. 2009. The epiphytic communities of various ecological types of aquatic vegetation of five pastoral ponds. Biologia, 64(1):88-96, https://doi.org/10.2478/s11756-009-0006-x.
Michelutti N A, Holtham J, Douglas M S V, Smol J P. 2003.Periphytic diatom ssemblages from ultraoligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. Journal of Phycology, 39(3):465-480, https://doi.org/10.1046/j.1529-8817.2003.02153.x.
Neif É M, de Lima Behrend R D, Rodriguez L. 2013. Seasonal dynamics of the structure of epiphytic algal community on different substrates from a Neotropical floodplain.Brazilian Journal of Botany, 36(3):169-177, https://doi.org/10.1007/s40415-013-0021-6.
Nivolianitou Z, Synodinou B. 2012. Environmental management of big riverine floods:the case of evros river in greece. In:Advances in Environmental Science and Sustainability. WSEAS Press, Sliema, Malta. p.15-20.
Nõges N, Luup H, Feldmann T. 2010. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquatic Ecology, 44(1):83-92, https://doi.org/10.1007/s10452-009-9249-4.
Nusch E A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie, 14:14-36.
Öterler B, Albay M, Çamur-Elipek B, Güher H, Kırgız T. 2015.Spatial and temporal distribution of phytoplankton in Lake Gala (Edirne/TURKEY). Trakya University Journal of Natural Sciences, 16(2):71-80.
Padial A A, Thomaz S M, Agostinho A A. 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia, 624(1):161-170, https://doi.org/10.1007/s10750-008-9690-8.
Pelicice F M, Thomaz S M, Agostinho A A. 2008. Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes. Neotropical Ichthyology, 6(4):543-550, https://doi.org/10.1590/S1679-62252008000400001.
Pestalozzi H G. 1982. Das phytoplankton des susswasser Teil:8 E. Schweizerbart'sche Verlagsbuchhandlund (Nagele U. Obermiller). Stuttgart. p.1-539.
Prescott G W. 1973. Algae of Western Great Lake Area. Fifth printing. William C. Brown Publishers, Dubaque. p.1-977.
Ros J. 1979. Práticas de ecologia. Editora Omega, Barcelona.p.181.
Schallenberg M, Burns C W. 2004. Effects of sediment resuspension on phytoplankton production:teasing apart the influences of light, nutrients and algal entrainment.Freshwater Biology, 49(2):143-159, https://doi.org/10.1046/j.1365-2426.2003.01172.x.
Schippers P, van de Weerd H, de Klein J, de Jong B, Scheffer M. 2006. Impacts of agricultural phosphorus use in catchments on shallow lake water quality:about buffers, time delays and equilibria. Sci. Total Environ., 369(1-3):280-294, https://doi.org/10.1016/j.scitotenv.2006.04.028.
Steinman A, Abdimalik M, Ogdahl M E, Oudsema M. 2016.Understanding planktonic vs. benthic algal response to manipulation of nutrients and light in a eutrophic lake.Lake and Reservoir Management, 32(4):402-409, https://doi.org/10.1080/10402381.2016.1235065.
Stevenson R J, Singer R, Roberts D A, Boylen C W. 1985.Patterns of epipelic algal abundance with depth, trophic status, and acidity in poorly buffered New Hamshire lakes. Canadian Journal of Fisheries and Aquatic Sciences, 42(9):1 501-1 512, https://doi.org/10.1139/f85-188.
Sun J, Liu D Y. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11):1 331-1 346, https://doi.org/10.1093/plankt/fbg096.
Tokatli C. 2014. Drinking water quality of a rice land in Turkey by statistical and GIS perspectives. Polish Journal of Environmental Studies, 23(6):2 247-2 258, https://doi.org/10.15244/pjoes/26967.
Tokatli C. 2015. Assessment of water quality in the Meriç River as an ecosystem element in Turkey's Thrace region. Polish Journal of Environmental Studies, 24(5):2 205-2 211, https://doi.org/10.15244/pjoes/58780.
Tunca H, Ongun-Sevindik T, Bal D N, Arabacı S. 2014. Community structure of epiphytic algae on three different macrophytes at Acarlar floodplain forest (Northern Turkey). Chinese Journal of Oceanology and Limnology, 32(4):845-857, https://doi.org/10.1007/s00343-014-3205-4.
Utermöhl H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt. Int. Ver. Theor. Angew. Limnol., 9:1-38.
Vadeboncoeur Y, Kalff J, Christoffersen K, Jeppesen E. 2006. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. Journal of the North American Benthological Society, 25(2):379-392, https://doi.org/10.1899/0887-3593(2006)25[379:SAADO V]2.0.CO;2.
Vadeboncoeur Y, Peterson G, Vander Zanden M J, Kalff J. 2008. Benthic algal production across lake size gradients:interactions among morphometry, nutrients, and light.Ecology, 89(9):2 542-2 552, https://doi.org/10.1890/07-1058.1.
Vadeboncoeur Y, Steinman A D. 2002. Periphyton function in lake ecosystems. The Scientific World Journal, 2:1 449-1 468, https://doi.org/10.1100/tsw.2002.294.
Vadeboncoeur Y, Devlin S P, McIntyre P B, Vander Zanden M J. 2014. Is there light after depth? Distribution of periphyton chlorophyll and productivity in lake littoral zones. Freshwater Science, 33(2):524-536, https://doi.org/10.1086/676315.
Vinebrooke R D, Leavitt P R. 1999. Phytobenthos and phytoplankton as potential indicators of climate change in mountain lakes and ponds:a HPLC-based pigment approach. J. North Am. Benth. Soc., 18(1):15-33, https://doi.org/10.2307/1468006.
Vis C, Hudon C, Carignan R, Gagnon P. 2007. Spatial analysis of production by macrophytes, phytoplankton and epiphyton in a large river system under different waterlevel conditions. Ecosystems, 10(2):293-310, https://doi.org/10.1007/s10021-007-9021-3.