Cite this paper:
SONG Junjie, ZHAO Bo, LIU Jinhu, CAO Liang, DOU Shuozeng. Comparison of otolith shape descriptors and morphometrics for stock discrimination of yellow croaker along the Chinese coast[J]. HaiyangYuHuZhao, 2018, 36(5): 1870-1879

Comparison of otolith shape descriptors and morphometrics for stock discrimination of yellow croaker along the Chinese coast

SONG Junjie1,3, ZHAO Bo1,3, LIU Jinhu1, CAO Liang1, DOU Shuozeng1,2,3
1 CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
This study compared and evaluated the efficiency of two otolith shape descriptors (i.e., the elliptic Fourier transform (EFT) and discrete wavelet transform (DWT)) and morphometrics for stock discrimination. To accomplish this, sample fish from three stocks of yellow croaker Larimichthys polyactis along the Chinese coast (LDB stock from the Liaodong Bay of the Bohai Sea, JZB stock from the Jiaozhou Bay of the Yellow Sea and CJE stock from the Changjiang River estuary of the East China Sea) were used for otolith morphology analyses. The results showed that morphometrics produced an overall classification success rate of 70.8% in contrast with success rates of 80.0% or 82.0% obtained using EFT or DWT, respectively. This suggests that the two shape descriptors comparably discriminated among the stocks and performed more efficiently than morphometrics. During data adjustment and acquisition, some size variables were excluded from the subsequent discriminant analysis for stock discrimination because they were statistically "ineffective," which could reduce the efficiency of morphometrics and lead to relatively low overall classification success. Both EFT and DWT retain the contour coefficients and thus provide a detailed description of otolith shape, which could improve discriminatory efficiency compared with morphometrics.
Key words:    otolith|stock discrimination|discrete wavelet transform|elliptic Fourier transform|morphometrics|Larimichthys polyactis   
Received: 2017-07-31   Revised:
PDF (521 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by SONG Junjie
Articles by ZHAO Bo
Articles by LIU Jinhu
Articles by CAO Liang
Articles by DOU Shuozeng
Agüera A, Brophy D. 2011. Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fish. Res., 110(3):465-471.
Arechavala-Lopez P, Sanchez-Jerez P, Bayle-Sempere J T, Sfakianakis D G, Somarakis S. 2012. Discriminating farmed gilthead sea bream Sparus aurata and European sea bass Dicentrarchus labrax from wild stocks through scales and otoliths. J. Fish Biol., 80(6):2 159-2 175.
Avigliano E, Domanico A, Sánchez S, Volpedo A V. 2017.Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fish. Res., 186:1-10.
Avigliano E, Martinez C F R, Volpedo A V. 2014. Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater-estuarine environment. Fish.Res., 149:55-60.
Begg G A, Brown R W. 2000. Stock identification of haddock Melanogrammus aeglefinus on Georges bank based on otolith shape analysis. Trans. Am. Fish. Soc., 129(4):935-945.
Begg G A, Waldman J R. 1999. An holistic approach to fish stock identification. Fish. Res., 43(1-3):35-44.
Bird J L, Eppler D T, Checkley D M Jr. 1986. Comparisons of herring otoliths using Fourier series shape analysis. Can.J. Fish. Aquat. Sci., 43(6):1 228-1 234.
Burke N, Brophy D, King P A. 2008. Otolith shape analysis:its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea.ICES J. Mar. Sci., 65(9):1 670-1 675.
Campana S E, Casselman J M. 1993. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci., 50(5):1 062-1 083.
Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can.J. Fish. Aquat. Sci., 61(2):158-167.
Chen J S. 2006. Theories of River Water Quality and Water Quality of Chinese Rivers. Science Press, Beijing. 292p.(in Chinese)
Chuang G C H, Kuo C C J. 1996. Wavelet descriptor of planar curves:theory and applications. IEEE Trans. Image Process., 5(1):56-70.
Conroy C W. 2016. The behaviors, habitat preferences, and ecology of distinct Atlantic cod phenotypes in the Gulf of Maine. Northeastern University, Boston, Massachusetts. 222p.
Crampton J S. 1995. Elliptic Fourier shape analysis of fossil bivalves:some practical considerations. Lethaia, 28(2):179-186.
Dou S Z, Yu X, Cao L. 2012. Otolith shape analysis and its application in fish stock discrimination:a case study.Oceanol. Limnol. Sin., 43(4):702-712. (in Chinese with English abstract)
Eggers F, Slotte A, Libungan L A, Johannessen A, Kvamme C, Moland E, Olsen E M, Nash R D. 2014. Seasonal dynamics of Atlantic herring (Clupea harengus L.) populations spawning in the vicinity of marginal habitats. PLoS One, 9(11):e111985.
Ferguson G J, Ward T M, Gillanders B M. 2011. Otolith shape and elemental composition:complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish. Res., 110(1):75-83.
Graps A. 1995. An introduction to wavelets. IEEE Comput.Sci. Eng., 2(2):50-61.
Han Z Q, Lin L S, Shui B N, Gao T X. 2009. Genetic diversity of small yellow croaker Larimichthys polyactis revealed by AFLP markers. Afr. J. Agric. Res., 4(7):605-610.
Jin X S. 1996. Ecology and population dynamics of small yellow croaker (Pseudosciaena polyactis Bleeker) in the Yellow Sea. J. Fish. Sci. China, 3(1):32-46. (in Chinese with English abstract)
Kuhl F P, Giardina C R. 1982. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process., 18(3):236-258.
Li X Z, Liu L S, Li B Q. 2010. Macrobenthos in China Sea:Research and Practice. Ocean Press, Beijing. 378p. (in Chinese)
Libungan L A, Óskarsson G J, Slotte A, Jacobsen J A, Pálsson S. 2015. Otolith shape:a population marker for Atlantic herring Clupea harengus. J. Fish Biol., 86(4):1 377-1 395.
Libungan L A, Pálsson S. 2015. ShapeR:an R package to study otolith shape variation among fish populations. PLoS One, 10(3):e0121102.
Libungan L A, Slotte A, Otis E O, Pálsson S. 2016. Otolith variation in Pacific herring (Clupea pallasii) reflects mitogenomic variation rather than the subspecies classification. Polar Biol., 39(9):1 571-1 579.
Lin L S, Cheng J H, Jiang Y Z, Yuan X W, Li J S, Gao T X. 2008. Spatial distribution and environmental characteristics of the spawning grounds of small yellow croaker in the southern Yellow Sea and the East China Sea. Acta Ecologica Sinica, 28(8):3 485-3 494. (in Chinese with English abstract)
Lin L S, Liu Z L, Jiang Y Z, Huang W, Gao T X. 2011. Current status of small yellow croaker resources in the southern Yellow Sea and the East China Sea. Chin. J. Oceanol.Limnol., 29(3):547-555.
Lleonart J, Salat J, Torres G J. 2000. Removing allometric effects of body size in morphological analysis. J. Theor.Biol., 205(1):85-93.
Lombarte A, Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ.Biol. Fishes, 37(3):297-306.
Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S. 2010. A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environ. Biol. Fishes, 89(3-4):591-605.
Lord C, Morat F, Lecomte-Finiger R, Keith P. 2012. Otolith shape analysis for three Sicyopterus (Teleostei:Gobioidei:Sicydiinae) species from New Caledonia and Vanuatu.Environ. Biol. Fishes, 93(2):209-222.
Mallat S G. 1989. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Trans.Pattern Anal. Mach. Intell., 11(7):674-693.
Murta A G, Borges M F, Silveiro M L. 1996. Morphological variations in the sagitta otoliths of horse mackerel(Trachurus trachurus) in Portuguese waters (Div. IXa).ICES CM 1996/H:27. 8p.
Parisi-Baradad V, Lombarte A, Garcia-Ladona E, Cabestany J, Piera J, Chic O. 2005. Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Mar. Freshw.Res., 56(5):795-804.
Parisi-Baradad V, Manjabacas A, Lombarte A, Olivella R, Chic Ò, Piera J, García-Ladona E. 2010. Automated Taxon Identification of Teleost fishes using an otolith online database-AFORO. Fish. Res., 105(1):13-20.
Renán X, Montero-Muñoz J, Garza-Pérez J R, Brulé T. 2016. Age and stock analysis using otolith shape in gags from the southern Gulf of Mexico. Trans. Am. Fish. Soc., 145(6):1 252-1 265.
Renán X, Pérez-Díaz E, Colás-Marrufo T, Garza-Pérez J R, Brulé T. 2011. Using otolith shape analysis to identify different stocks of Epinephelus morio from the Campeche Bank. In:Proceedings of the 63rd Gulf and Caribbean Fisheries Institute. San Juan, Puerto Rico. p.200-206.
Sadighzadeh Z, Tuset V M, Valinassab T, Dadpour M R, Lombarte A. 2012. Comparison of different otolith shape descriptors and morphometrics for the identification of closely related species of Lutjanus spp. from the Persian Gulf. Mar. Biol. Res., 8(9):802-814.
Sadighzadeh Z, Valinassab T, Vosugi G, Motallebi A A, Fatemi M R, Lombarte A, Tuset V M. 2014. Use of otolith shape for stock identification of John's snapper, Lutjanus johnii(Pisces:Lutjanidae), from the Persian Gulf and the Oman Sea. Fish. Res., 155:59-63.
Stransky C, Murta A G, Schlickeisen J, Zimmermann C. 2008. Otolith shape analysis as a tool for stock separation of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean. Fish. Res., 89(2):159-166.
Stransky C. 2014. Morphometric outlines. In:Cadrin S X, Kerr L A, Mariani S eds. Stock Identification Methods:Applications in Fishery Science. 2nd edn. Academic Press, New York. p.129-140.
Sun S, Sun X X. 2011. Atlas of Long-Term Changes in the Jiaozhou Bay Ecosystem. Ocean Press, Beijing. 809p. (in Chinese)
Tracey S R, Lyle J M, Duhamel G. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res., 77(2):138-147.
Tuset V M, Lozano I J, González J A, Pertusa J F, García-Díaz M M. 2003. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). J. Appl. Ichthyol., 19(2):88-93.
Tuset V M, Parisi-Baradad V, Lombarte A. 2013. Application of otolith mass and shape for discriminating scabbardfishes Aphanopus spp. in the north-eastern Atlantic Ocean. J. Fish. Biol., 82(5):1 746-1 752.
Vignon M, Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser., 411:231-241.
Watkinson D A, Gillis D M. 2005. Stock discrimination of Lake Winnipeg walleye based on Fourier and wavelet description of scale outline signals. Fish. Res., 72(2):193-203.
Ye C C. 1991. Small yellow croaker (Larimichthys polyactis). In:Deng J Y ed. Marine Fisheries Biology. China Agriculture Press, Beijing. (in Chinese)
Zhang C, Jiang Y Q, Ye Z J, Li Z G, Dou S Z. 2016. A morphometric investigation of the small yellow croaker(Larimichthys polyactis Bleeker, 1877):evidence for subpopulations on the Chinese coast. J. Appl. Ichthyol., 32(1):67-74.
Zhang Y D, Wang S H, Ji G L, Dong Z C. 2013. An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci. World J., 2013:Article ID 130134.