Cite this paper:
Anastasia KOMOVA, Anna MELNIKOVA, Zorigto NAMSARAEV, Roman ROMANOV, Vera STRAKHOVENKO, Ekaterina OVDINA, Nadezhda ERMOLAEVA. Chemical and biological features of the saline Lake Krasnovishnevoye (Baraba, Russia) in comparison with Lake Malinovoe (Kulunda, Russia): a reconnaissance study[J]. Journal of Oceanology and Limnology, 2018, 36(6): 1993-2001

Chemical and biological features of the saline Lake Krasnovishnevoye (Baraba, Russia) in comparison with Lake Malinovoe (Kulunda, Russia): a reconnaissance study

Anastasia KOMOVA1, Anna MELNIKOVA1, Zorigto NAMSARAEV1, Roman ROMANOV2, Vera STRAKHOVENKO3, Ekaterina OVDINA3, Nadezhda ERMOLAEVA4
1 National Research Centre "Kurchatov Institute", Moscow 123182, Russia;
2 Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
3 V. S. Sobolev Institute of Geology and Mineralogy of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
4 Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences, Barnaul 656038, Russia
Abstract:
The Baraba and Kulunda steppes are located in southwestern Siberia in an area with an arid continental climate. This paper presents results of the first study of the hypersaline Lake Krasnovishnevoye (Baraba steppe, TDS (total dissolved solids)=297 g/L, pH 7.88). The major chemical, mineralogical and biological features of the lake were studied and compared to those of Lake Malinovoe, a typical saline neutral lake of Kulunda steppe (TDS=396 g/L, pH 7.63). The phytoplankton composition and the culturable diversity of anoxygenic phototrophic bacteria from Lake Krasnovishnevoye correspond to the ones in the Kulunda lakes. Nevertheless, the peculiarities of water composition and regime of Lake Krasnovishnevoye reduce the biodiversity to prokaryotes and unicellular algae.
Key words:    saline and soda lakes|hydrochemistry|hydrobiology|phytoplankton|zooplankton|anoxygenic phototrophic bacteria   
Received: 2018-02-21   Revised:
Tools
PDF (978 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Anastasia KOMOVA
Articles by Anna MELNIKOVA
Articles by Zorigto NAMSARAEV
Articles by Roman ROMANOV
Articles by Vera STRAKHOVENKO
Articles by Ekaterina OVDINA
Articles by Nadezhda ERMOLAEVA
References:
Biebl H, Pfennig N. 1981. Isolation of members of the family rhodospirillaceae. In:Starr M P, Stolp H, Trüper H G et al eds. The Prok aryotes. Springer, Berlin, Heidelberg.p.267-273.
Bryanskaya A V, Malup T K, Lazareva E V, Taran O P, Rozanov A S, Efimov V M, Peltek S E. 2016. The role of environmental factors for the composition of microbial communities of saline lakes in the Novosibirsk region(Russia). BMC Microbiol, 16:S4.
Foti M J, Sorokin D Y, Zacharova E E, Pimenov N V, Kuenen J G, Muyzer G. 2008. Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia). Extremophiles, 12(1):133-145.
Gorlenko V M, Bryantseva I A, Rabold S, Tourova T P, Rubtsova D, Smirnova E, Thiel V, Imhoff J F. 2009.Ectothiorhodospira variabilis sp. nov., an alkaliphilic and halophilic purple sulfur bacterium from soda lakes.International Journal of Systematic and Evolutionary Microbiology, 59(Pt 4):658-664.
Grant W D. 2006. Alkaline Environments and Biodiversity.EOLSS Publishers Oxford, UK. p.1-19.
Hammer U T. 1986. Saline Lake Ecosystems of the World(Monographiae Biologicae). Dr. W. Junk Publishers, Dordrecht. 616p.
Herbert R A. 1990. Methods for enumerating microorganisms and determining biomass in natural environments. In:Grigorova R, Norris J R eds. Methods in Microbiology.Academic Press, London. p.1-40.
Imhoff J F. 2005. Order Chromatiales. In:Garrity G M, Editorin-Chief. Bergey's Manual of Systematic Bacteriology:The Gammaproteobacteria. 2nd edn. Springer-Verlag, New York, Berlin, Heidelberg. p.1-59.
Komárek J, Fott B. 1983. Chlorophyceae (grünalgen).Ordnung:chlorococcales. In:Huber-Pestalozzi G ed. Das Phytoplankton des Süßwassers. Systematik und Biologie.Schweizerbart'sche, Stuttgart.
Kompantseva E I, Komova A V, Rusanov I I, Pimenov N V, Sorokin D Y. 2009. Primary production of organic matter and phototrophic communities in the soda lakes of the Kulunda steppe (Altai krai). Microbiology, 78(5):643-649.
Kompantseva E I, Komova A V, Sorokin D Y. 2010. Communities of anoxygenic phototrophic bacteria in the saline soda lakes of the Kulunda Steppe (Altai Krai).Microbiology, 79(1):89-95.
Kompantseva E I, Naimark E B, Boeva N M, Zhukhlistov A P, Novikov V M, Nikitina N S. 2013. Interaction of anoxygenic phototrophic bacteria Rhodopseudomonas sp.with kaolinite. Microbiology, 82(3):316-326.
Kompantseva E I, Naimark E B, Komova A V, Nikitina N S. 2011. Interaction of the haloalkaliphilic purple bacteria Rhodovulum steppense with aluminosilicate minerals.Microbiology, 80(5):650-656.
Landsat Look Viewer. https://landsatlook.usgs.gov/, accessed 2 May 2018.Lepot K, Compère P, Gérard E, Namsaraev Z, Verleyen E, Tavernier I, Hodgson D A, Vyverman W, Gilbert B, Wilmotte A, Javaux E J. 2014. Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake. Geobiology, 12(5):424-450.
Melack J M, Kilham P. 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes.Limnol. Oceanogr., 19(5):743-755.
Moiseenko T I, Gashkina N A, Dinu M I, Kremleva T A, Khoroshavin V Y. 2013. Aquatic geochemistry of small lakes:effects of environment changes. Geochemistry International, 51(13):1 031-1 148.
Naimark E B, Kompantseva E I, Komova A V. 2009. Interaction between anoxygenic phototrophic bacteria of the genus Rhodovulum and volcanic ash. Microbiology, 78(6):747-756.
Namsaraev Z, Samylina O, Sukhacheva M, Borisenko G, Sorokin D Y, Tourova T. 2018. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake(Kulunda Steppe, Russia). Extremophiles, 22(4):651-663.
Oren A. 2014. The ecology of Dunaliella in high-salt environments. Journal of Biological ResearchThessaloniki, 21:23.
Pfennig N, Lippert K D. 1966. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiologie, 55(3):245-256.
Popa R, Kinkle B K, Badescu A. 2004. Pyrite framboids as biomarkers for iron-sulfur systems. Geomicrobiology Journal, 21(3):193-206.
Rivadeneyra M A, Delgado G, Ramos-Cormenzana A, Delgado R. 1998. Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities:crystal formation sequence. Research in Microbiology, 149(4):277-287.
Samylina O S, Sapozhnikov F V, Gainanova O Y, Ryabova A V, Nikitin M A, Sorokin D Y. 2014. Algo-bacterial communities of the Kulunda steppe (Altai region, Russia)soda lakes. Microbiology, 83(6):849-860.
Savchenko N V. 1997. The Lakes of Southern Plains of Western Siberia. Publishers SBRAS, Novosibirsk. 297p.
Shadrin N, Anufriieva E. 2012. Review of the biogeography of Artemia Leach, 1819 (Crustacea:Anostraca) in Russia.International Journal of Artemia Biology, 2(1):51-61.
Sorokin D Y, Abbas B, Geleijnse M, Pimenov N V, Sukhacheva M V, Van Loosdrecht M C. 2015. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiology Ecology, 91(4):fiv016.
Sorokin D Y, Kuenen J G, Muyzer G. 2011. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Frontiers Microbiology, 2:44.
Sorokin D Y, Rusanov I I, Pimenov N V, Tourova T P, Abbas B, Muyzer G. 2010. Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe(Altai, Russia). FEMS Microbiology Ecology, 73(2):278-290.
State Standard PND F 14.2.99-97. 1997. Quantitative chemical analysis of water. A titrimetric method of measurement of hydrocarbonates mass concentration in the natural samples. Moscow, State Committee of the Russian Federation for Environmental Protection. 20p. (in Russian)
Strakhovenko V D, Ovdina E A, Ermolaeva N I, Zarubina E Yu, Saltykov A V. 2017. The peculiarities of chemical composition of lake waters and forming there various sapropels. In:Proceedings of Russian Scientific Conference with Foreign Participation "Water Resources:The New Challenges and the Ways of Solution". Sochi, p.426-431. (in Russian)
Strakhovenko V D, Shcherbov B L, Malikova I N, Vosel Y S. 2010. The regularities of distribution of radionuclides and reare-earth elements in bottom sediments of Siberian lakes. Russian Geology and Geophysics, 51(11):1 167-1 178.
Strakhovenko V D. 2011. Geochemistry of Bottom Sediments in the Small Continental Lakes of Siberia. IGM SORAN, Novosibirsk. 32p. (in Russian)
Tatarinov A V, Yalovik L I, Namsaraev Z, Plyusnin A M, Konstantinova K K, Zhmodik S M. 2005. Role of bacterial mats in the formation of rocks and ore minerals in travertines of nitric hydrothermal springs in the Baikal Rift zone. Doklady Earth Sciences, 403(6):939-942.
Tourova T P, Slobodova N V, Bumazhkin B K, Sukhacheva M V, Sorokin D Y. 2014. Diversity of diazotrophs in the sediments of saline and soda lakes analyzed with the use of the nifH gene as a molecular marker. Microbiology, 83(5):634-647.
Tsalolikhin S Y. 1995. Key to Freshwater Invertebrates of Russia. Zoological Institute RAS, Saint-Petersburg. (in Russian)
Vesnina L V, Mitrofanova E Yu, Lisitsyna T O. 2005. Plankton of salted lakes of the territory of a closed runoff (the South of West Siberia, Russia). Sibirskiy Ekologicheskiy Zhurnal, 2:221-233. (in Russian)
Woronichin N N. 1929. Materials towards study of algal vegetation in lakes of Kulunda Steppe. Izvestiya Glavnogo Botanicheskogo Sada SSSR, 28(1-2):12-40. (in Russian)
Woroniсhin N N. 1934. Contributions to the knowledge of biology of saline water bodies from Kulunda Steppe.Trudy SOPS AN SSSR, Ser. Sibirskaya, 8:177-183. (in Russian)
Zavarzin G A. 1993. Epicontinental soda lakes as probable relict biotopes of terrestrial biota formation.Mikrobiologiya, 62(6):789-800.
Copyright © Haiyang Xuebao