Cite this paper:
MCCLOUD Clayton Leigh, ISMAIL Hasnun Nita, SEURONT Laurent. Cue hierarchy in the foraging behaviour of the brackish cladoceran Daphniopsis australis[J]. Journal of Oceanology and Limnology, 2018, 36(6): 2050-2060

Cue hierarchy in the foraging behaviour of the brackish cladoceran Daphniopsis australis

MCCLOUD Clayton Leigh1, ISMAIL Hasnun Nita2, SEURONT Laurent3
1 Australian Fisheries Management Authority, Canberra, Australia;
2 School of Biology, Universiti Teknologi MARA, Selangor, Malaysia;
3 CNRS, Univ. Lille, Univ. Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France
Abstract:
Zooplankton communities are an essential component of marine and freshwater food webs. However, there is still a relative lack of information on how these organisms behaviourally respond to a range of abiotic and biotic stressors. Specifically, the behaviour of the cladoceran Daphniopsis australis, a species endemic to South-eastern Australian saline lakes and ponds, is still unknown despite its potential role in the structure and function of inland water ecosystems. The swimming behaviour of males, parthenogenetic females and epiphial females was investigated under various conditions and combinations of food and conspecific cues. In the absence of cues, males displayed the most extensive swimming behaviour, exploring all areas of the container, and swimming in a series of relatively straight trajectories. In contrast, females typically exhibited a hop-and-sink motion characterised by the alternation between short bursts of swimming and sinking phases. Both females spent long periods near the bottom of the container, but epiphial females appeared to be more active than parthenogenetic ones that rarely made an excursion in the water column. In the presence of cues, males and females showed abilities to detect infochemicals from food and conspecifics, but exhibited specific behavioural strategies. Males essentially increased their swimming speed in the presence of food and/or conspecific infochemicals, and this increase was independent on the source of the cues, i.e. food, conspecific or a mixture of food and conspecifics. In contrast, females exhibited cue hierarchies that were related to their sexual status. Parthenogenetic females swam faster in the presence of food and a mixture of food and conspecific infochemicals than in the presence of cue from the opposite sex, which did not significantly differ from control observations conducted in the absence of cues. Epiphial females decreased their swimming speed in the presence of cues, with the most significant behavioural answers being driven by sex-related cues.
Key words:    zooplankton|chemical cues|sex-specific behaviour   
Received: 2018-01-19   Revised:
Tools
PDF (740 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by MCCLOUD Clayton Leigh
Articles by ISMAIL Hasnun Nita
Articles by SEURONT Laurent
References:
Aladin N V. 1991. Salinity tolerance and morphology of the osmoregulation organs in Cladocera with special reference to Cladocera from the Aral Sea. Hydrobiologia, 225(1):291-299.
Aladin N V, Potts W T W. 1995. Osmoregulatory capacity of the Cladocera. J. Comp. Physiol. B., 164(8):671-683.
Banse K. 1995. Zooplankton:pivotal role in the control of ocean production:I. Biomass and production. ICES J.Mar. Sci., 52(3-4):265-277.
Baylor E R, Smith F E. 1953. The orientation of Cladocera to polarized light. Am. Nat., 87(833):97-101.
Benzie J A H. 2005. The Genus Daphnia (Including Daphniopsis):Anomopoda:Daphniidae (Guides to the Identification of the Microinvertebrates of the Continental Waters of the World). Kenobi Productions, Ghent.
Bledzki L A, Rybak J I. 2016. Freshwater Crustacean Zooplankton of Europe:Cladocera & Copepoda(Calanoida, Cyclopoida) Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis. Springer, New York. 918p.
Bownik A. 2017. Daphnia swimming behaviour as a biomarker in toxicity assessment:a review. Sci. Total Environ., 601-602:194-205.
Brancelj A, De Meester L, Spaak P. 2012. Cladocera:the Biology of Model Organisms:Proceedings of the Fourth International Symposium on Cladocera, Held in Postojna, Slovenia, 8-15 August 1996. Springer, New York. 303p.
Brewer M C. 1998. Mating behaviours of Daphnia pulicaria, a cyclic parthenogen:comparisons with copepods. Philos.Trans. Roy. Soc. B:Biol. Sci., 353(1369):805-815.
Buskey E J. 1984. Swimming patterns as an indicator of the roles of copepod sensory systems in the recognition of food. Mar. Biol., 79(2):165-175.
Campbell C E. 1994. Seasonal zooplankton fauna of salt evaporation basins in South Australia. Austr. J. Mar.Freshw. Res., 45(2):199-208.
Colbourne J K, Wilson C C, Hebert P D N. 2006. The systematics of Australian Daphnia and Daphniopsis(Crustacea:Cladocera):a shared phylogenetic history transformed by habitat-specific rates of evolution. Biol. J.Linn. Soc., 89(3):469-488.
Cowles T J. 2004. Planktonic layers:physical and biological interactions on the small scale. In:Seuront L, Strutton P G eds. Handbook of Scaling Methods in Aquatic Ecology:Measurements, Analysis, Simulation. CRC Press, Boca Raton, FL. p.31-49.
Da S. Ferrão Filho A, Da Costa S M, Ribeiro M G L, Azevedo S M F O. 2008. Effects of a saxitoxin-producer strain of Cylindrospermopsis raciborskii (cyanobacteria) on the swimming movements of cladocerans. Environ. Toxicol., 23(2):161-168.
Dees N D, Bahar S, Garcia R, Moss F. 2008. Patch exploitation in two dimensions:from Daphnia to simulated foragers.J. Theor. Biol., 252(1):69-76.
Delbare D, Dhert P. 1996. Cladocerans, nematodes and trochophora. In:Laverns P, Sorgeloos P eds. Manual on the Production and Use of Live Food for Aquaculture. Food and Agriculture Organization of United Nation, Rome.
Dodson S I, Frey D G. 2001. Cladocera and other branchiopoda.In:Thorp J H, Covich A P eds. Ecology and Classification of North American Freshwater Invertebrates. 2nd edn.Academic Press, San Diego. p.723-786.
Dodson S, Ramcharan C. 1991. Size-specific swimming behavior of Daphnia pulex. J. Plankton Res., 13(6):1 367-1 379.
Dusenbery D B. 1992. Sensory Ecology:How Organisms Acquire and Respond to Information. WH Freeman, New York.
Garcia R, Moss F, Nihongi A, Strickler J R, Göller S, Erdmann U, Schimansky-Geier L, Sokolov I M. 2007. Optimal foraging by zooplankton within patches:the case of Daphnia. Mathem. Biosci., 207(2):165-188.
Hamza W, Ruggiu D. 2000. Swimming behaviour of Daphnia galeata×hyalina as a response to algal substances and to opaque colours. Int. Rev. Hydrobiol., 85(2-3):157-166.
Hann B J. 1986. Revision of the genus Daphniopsis Sars, 1903(Cladocera:Daphniidae) and a description of Daphniopsis chilensis, new species, from South America. J. Crustacean Biol., 6(2):246-263.
Hebert P D, Wilson C C. 2000. Diversity of the genus Daphniopsis in the saline waters of Australia. Can. J.Zool., 78(5):794-808.
Hinow P, Nihongi A, Strickler J R. 2015. Statistical mechanics of zooplankton. PLoS One, 10(8):e0135258.
Humphries N E, Weimerskirch H, Queiroz N, Southall E J, Sims D W. 2012. Foraging success of biological Lé vy flights recorded in situ. Proc. Natl. Acad. Sci. U.S.A., 109(19):7 169-7 174.
Ismail H N, Qin J G, Seuront L, Adams M. 2010b. Impacts of male and food density on female performance in the brackish cladoceran Daphniopsis australis.Hydrobiologia, 652(1):277-288.
Ismail H N, Qin J G, Seuront L. 2010a. Thermal and halo tolerance of a brackish cladoceran Daphniopsis australis(Sergeev & Williams). In:Martorino L, Puopolo K eds.New Oceanography Research Developments:Marine Chemistry, Ocean Floor Analyses and Marine Phytoplankton. Nova Science Publisher, New York.p.213-230.
Ismail H N, Qin J G, Seuront L. 2011a. Dietary responses of the brackish cladoceran Daphniopsis australis fed on different algal species. J. Exp. Mar. Biol. Ecol., 409(1-2):275-282.
Ismail H N, Qin J G, Seuront L. 2011b. Regulation of life history in the brackish cladoceran, Daphniopsis australis(Sergeev and Williams, 1985) by temperature and salinity.J. Plankton Res., 33(5):763-777.
Ismail H N, Qin J G, Seuront L. 2011c. The survival and reproductive performance of Daphniopsis australis(Cladocera:Daphniidae) in response to temperature changes. Jurnal Intelek, 6(1):70-76.
Kiørboe T. 2008. A Mechanistic Approach to Plankton Ecology. Princeton University Press, Princeton.
La G H, Choi J Y, Chang K H, Jang M H, Joo G J, Kim H W. 2014. Mating behavior of Daphnia:impacts of predation risk, food quantity, and reproductive phase of females.PLoS One, 9(8):e104545.
Mergeay J, Declerck S, Verschuren D, De Meester L. 2006.Daphnia community analysis in shallow Kenyan lakes and ponds using dormant eggs in surface sediments.Freshw. Biol., 51(3):399-411.
Nihongi A, Ziarek J J, Nagai T, Uttieri M, Zambianchi E, Strickler J R. 2011. Daphnia pulicaria hijacked by Vibrio cholera:altered swimming behaviour and predation risk implications. In:Kattel G ed. Zooplankton and Phytoplankton:Types, Characteristics and Ecology. Nova Science Publishers, New York. p.181-192.
Nihongi A, Ziarek J J, Uttieri M, Sandulli M, Zambianchi E, Strickler J R. 2016. Behavioural interseasonal adaptations in Daphnia pulicaria (Crustacea:Cladocera) as induced by predation infochemicals. Aquat. Ecol., 50(4):667-684.
O'Keefe T C, Brewer M C, Dodson S I. 1998. Swimming behavior of Daphnia:its role in determining predation risk. J. Plankton Res., 20(5):973-984.
Pyke J H. 1984. Optimal foraging theory:a critical review.Ann. Rev. Ecol. Syst., 15:523-575.
Sars G O. 1903. On the crustacean fauna of Central Asia. 2.Cladocera. Ann. Mus. zool. Acad. Sci. St. Petersbourg, 8:157-194.
Schwartz S S, Hebert P D N. 1987. Breeding system of Daphniopsis ephemeralis:adaptations to a transient environment. Hydrobiologia, 145(1):195-200.
Sergeev V, Williams W D. 1985. Daphniopsis australis nov.sp. (Crustacea:Cladocera), a further daphniid in Australian salt lakes. Hydrobiologia, 120(2):119-128.
Seuront L, Brewer M C, Strickler J R. 2004c. Quantifying zooplankton swimming behavior:the question of scale.In:Seuront L, Strutton P G eds. Handbook of Scaling Methods in Aquatic Ecology:Measurement, Analysis, Simulation. CRC Press, Boca Raton. p.333-359.
Seuront L, Schmitt F G, Brewer M C, Strickler J R, Souissi S. 2004b. From random walk to multifractal random walk in zooplankton swimming behavior. Zool. Stud., 43(2):498-510.
Seuront L, Stanley H E. 2014. Anomalous diffusion and multifractality enhance mating encounters in the ocean.Proc. Natl. Acad. Sci. U.S.A., 111(6):2 206-2 211.
Seuront L, Vincent D. 2008. Increased seawater viscosity, Phaeocystis globosa spring bloom and Temora longicornis feeding and swimming behaviours. Mar. Ecol. Progr.Ser., 363:131-145.
Seuront L, Yamazaki H, Souissi S. 2004a. Hydrodynamic disturbance and zooplankton swimming behavior. Zool.Stud., 43(2):376-387.
Seuront L. 2006. Effect of salinity on the swimming behaviour of the estuarine calanoid copepod Eurytemora affinis. J.Plankton Res., 28(9):805-813.
Seuront L. 2011. Behavioral fractality in marine copepods:endogenous rhythms versus exogenous stressors. Phys. A:Stat. Mech. Appl., 390(2):250-256.
Seuront L. 2013. Chemical and hydromechanical components of mate-seeking behaviour in the calanoid copepod Eurytemora affinis. J. Plankton Res., 35(4):724-743.
Seuront L. 2015a. On uses, misuses and potential abuses of fractal analysis in zooplankton behavioral studies:a review, a critique and a few recommendations. Phys. A:Stat. Mech. Appl., 432:410-434.
Seuront L. 2015b. Copepods:Diversity, Habitat and Behavior.Nova Science Publishers, New York. 291p.
Sims D W, Humphries N E, Bradford R W, Bruce B D. 2012.Lé vy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics. J.Anim. Ecol., 81(2):432-442.
Timms B V. 2007. The biology of the saline lakes of central and eastern inland of Australia:a review with special reference to their biogeographical affinities.Hydrobiologia, 576(1):27-37.
Uttieri M, Sandulli R, Spezie G, Zambianchi E. 2014. From small to large scale:a review of the swimming behaviour of Daphnia. In:El-Doma M ed. Daphnia:Biology and Mathematics Perspectives. Nova Science Publishers, New York. p.309-312.
Wickramarathna L N, Noss C, Lorke A. 2014. Hydrodynamic trails produced by Daphnia:size and energetics. PLoS One, 9(3):e92383.
Woodson C B, Webster D R, Weissburg M J, Yen J. 2007. Cue hierarchy and foraging in calanoid copepods:ecological implications of oceanographic structure. Mar. Ecol.Progr. Ser., 330:163-177.
Yen J, Sehn J K, Catton K, Kramer A, Sarnelle O. 2011.Pheromone trail following in three dimensions by the freshwater copepod Hesperodiaptomus shoshone. J.Plankton Res., 33(6):907-916.
Zar J H. 2010. Biostatistical Analysis. 5th edn. Prentice-Hall, Upper Saddle River, NJ.
Ziarek J J, Nihongi A, Nagai T, Uttieri M, Strickler J R. 2011.Seasonal adaptations of Daphnia pulicaria swimming behaviour:the effect of water temperature. Hydrobiologia, 661(1):317-327.
Copyright © Haiyang Xuebao