Cite this paper:
Fatima REHMAN, Muhammad FAISAL. Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium[J]. Journal of Oceanology and Limnology, 2015, 33(3): 585-589

Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium

Fatima REHMAN, Muhammad FAISAL
Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
Abstract:
Three bacterial strains Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium were investigated when grown in Luria-Bertani (LB) medium at 500 μg/mL Cr(VI). The hexavalent chromium reduction was measured by growing the strains in DeLeo and Ehrlich (1994) medium at 200 and 400 μg/mL K2CrO4. The optimal Cr (VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 51%, 39%, and 41%, respectively, at an initial K2CrO4 concentration of 200 μg/mL at pH 3 and temperature 37℃. At an initial chromate concentration of 400 μg/mL, the Cr(VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 24%, 19%, and 18%, respectively at pH 3 at 37℃ after 24 h. These strains have ability to reduce toxic hexavalent chromium to the less mobile trivalent chromium at a wide range of different environmental conditions and can be useful for the treatment of contaminated wastewater and soils.
Key words:    chromium|bioremediation|heavy metals|Bacillus pumilis|Exiguobacterium|Cellulosimicrobium cellulans   
Received: 2014-05-28   Revised: 2014-10-10
Tools
PDF (344 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Fatima REHMAN
Articles by Muhammad FAISAL
References:
Agrafioti E, Kalderis D, Diamadopoulos E. 2014. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J.Environ. Manage., 133 : 309-314.
Das A P, Mishra S. 2010. Biodegradation of the metallic carcinogen hexavalent chromium Cr (VI) by an indigenously isolated bacterial strain. J. Carcinog., 9 (1): 6, http://dx.doi.org/10.4103/1477-3163.63584.
DeLeo P C, Ehrlich H L. 1994. Reduction of hexavalent chromium by Pseudomonas fluorescens LB 300 in batch and continuous cultures. Appl. Microbiol. Biotechnol., 40 : 756-759.
Dhal B, Thatoi H, Das N, Pandey B D. 2010. Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J. Chem. Technol. Biotechnol., 85 (11): 1471-1479.
Essahale A, Malki M, Marín I, Moumni M. 2012. Hexavalent chromium reduction and accumulation by AcinetobacterAB1 isolated from Fez Tanneries in Morocco. Indian J.Microbiol., 52 (1): 48-53.
Faisal M, Hasnain S. 2004. Comparative study of Cr (VI) uptake and reduction in industrial effluent by Ochrobactrum intermedium and Brevibacterium sp.Biotechnol. Lett., 26 (21): 1 623-1 628.
Faisal M, Hasnain S. 2006. Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett. Appl. Microbiol., 43 (4): 461-466.
Hameed A, Hasnain S. 2012. Isolation and molecular identification of metal resistant Synechocystis from polluted areas. Afr. J. Microbiol. Res., 6 (3): 648-652.
Han X, Wong Y S, Wong M H, Tam N F Y. 2007. Biosorption and bioreduction of Cr(VI) by a microalgal isolate,Chlorella miniata. J. Hazard. Mater., 146 (1): 65-72.
Horsfall M J, Arbia A, Spiff A. 2004. Removal of Cu (II) and Zn (II) ions from wastewater by cassava (Manihot esculenta Cranz) waste biomass. Afr. J. Biotechnol., 2 (10): 360-364.
Lee S, Lee J-U, Chon H, Lee J. 2008. Reduction of Cr (VI) by indigenous bacteria in Cr-contaminated sediment under aerobic condition. J. Geochem. Explor., 96 (2): 144-147.
Loukidou M X, Zouboulis A I, Karapantsios T D, Matis K A. 2004. Equilibrium and kinetic modeling of chromium (VI) biosorption by Aeromonas caviae. Colloid Surfac A, 242 (1): 93-104.
Mukherjee K, Nandi R, Saha D, Saha B. 2014. Surfactantassisted enhancement of bioremediation rate for hexavalent chromium by water extract of Sajina (Moringa oleifera) flower. Desalin. Water Treat, http://dx.doi.org/ 10.1080/19443994.2014.884477.
Naja G, Mustin C, Volesky B, Berthelin J. 2005. A highresolution titrator: a new approach to studying binding sites of microbial biosorbents. Water Res., 39 (4): 579-588.
Onyancha D, Mavura W, Ngila J C, Ongoma P, Chacha J. 2008. Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum. J. Hazard. Mater., 158 (2): 605-614.
Pal A, Paul A. 2004. Aerobic chromate reduction by chromiumresistant bacteria isolated from serpentine soil. Microbiol.Res., 159 (4): 347-354.
Parameswari E, Lakshmanan A, Thilagavathi T. 2009.Chromate resistance and reduction by bacterial isolates.Aus. J. Basic Appl. Sci., 3 (2): 1 363-1 368.
Preetha B, Viruthagiri T. 2005. Biosorption of zinc (II) by Rhizopus arrhizus : equilibrium and kinetic modelling.Afr. J. Biotechnol., 4 (6): 506-508.
Romera E, GonzÁlez F, Ballester A, BlÁzquez M, Munoz J. 2007. Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technol., 98 (17): 3 344-3 353.
Tahri Joutey N, Bahafid W, Sayel H, Ananou S, El Ghachtouli N. 2014. Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ. Sci. Pollut. Res. Int., 21 (4): 3 060-3 072.
Thacker U, Parikh R, Shouche Y, Madamwar D. 2006.Hexavalent chromium reduction by Providencia sp.Process Biochem., 41 (6): 1 332-1 337.
Zahoor A, Rehman A. 2009. Isolation of Cr (VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J.Environ. Sci., 21 (6): 814-820.
Zayed A M, Terry N. 2003. Chromium in the environment: factors affecting biological remediation. Plant Soil, 249 (1): 139-156.
Zhang K, Li F. 2011. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Appl. Microbiol. Biotechnol., 90 (3): 1 163-1 169.
Copyright © Haiyang Xuebao