Cite this paper:
YIN Qunjian, ZHANG Weijia, LI Xuegong, ZHOU Lihong, QI Xiaoqing, ZHANG Chan, WU Long-Fei. Contribution of trimethylamine N-oxide on the growth and pressure tolerance of deep-sea bacteria[J]. Journal of Oceanology and Limnology, 2019, 37(1): 210-222

Contribution of trimethylamine N-oxide on the growth and pressure tolerance of deep-sea bacteria

YIN Qunjian1,2,3, ZHANG Weijia1,3,4, LI Xuegong1,3,4, ZHOU Lihong1,3,4, QI Xiaoqing1,3,4, ZHANG Chan1,2, WU Long-Fei3,5
1 Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS-Beijing-Qingdao-Sanya;
4 CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
5 AMU, LCB UMR 7283, CNRS-Marseille, 143402, France
Abstract:
Trimethylamine N-oxide (TMAO) is widely dispersed in marine environments and plays an important role in the biogeochemical cycle of nitrogen. Diverse marine bacteria utilize TMAO as carbon and nitrogen sources or as electron acceptor in anaerobic respiration. Alteration of respiratory component according to the pressure is a common trait of deep-sea bacteria. Deep-sea bacteria from different genera harbor high hydrostatic pressure (HHP) inducible TMAO reductases that are assumed to be constitutively expressed in the deep-sea piezosphere and facilitating quick reaction to TMAO released from fish which is a potential nutrient for bacterial growth. However, whether deep-sea bacteria universally employ this strategy remains unknown. In this study, 237 bacterial strains affiliated to 23 genera of Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria were isolated from seawater, sediment or amphipods collected at different depths. The pressure tolerance and the utilization of TMAO were examined in 74 strains. The results demonstrated no apparent correlation between the depth where the bacteria inhabit and their pressure tolerance, regarding to our samples. Several deep-sea strains from the genera of Alteromonas, Halomonas, Marinobacter, Photobacterium, and Vibrio showed capacity of TMAO utilization, but none of the isolated Acinebacter, Bacillus, Brevundimonas, Muricauda, Novosphingobium, Rheinheimera, Sphingobium and Stenotrophomonas did, indicating the utilization of TMAO is a species-specific feature. Furthermore, we noticed that the ability of TMAO utilization varied among strains of the same species. TMAO has greater impact on the growth of deep-sea isolates of Vibrio neocaledonicus than shallow-water isolates. Taken together, the results describe for the first time the TMAO utilization in deep-sea bacterial strains, and expand our understanding of the physiological characteristic of marine bacteria.
Key words:    marine bacteria|Trimethylamine N-oxide (TMAO)|high hydrostatic pressure (HHP)|pressure tolerance phenotype   
Received: 2017-12-14   Revised: 2018-03-08
Tools
PDF (610 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by YIN Qunjian
Articles by ZHANG Weijia
Articles by LI Xuegong
Articles by ZHOU Lihong
Articles by QI Xiaoqing
Articles by ZHANG Chan
Articles by WU Long-Fei
References:
Barrett E L, Kwan H S. 1985. Bacterial reduction of trimethylamine oxide. Annual Review of Microbiology, 39:131-149.
Bashar S, Sanyal S K, Sultana M, Hossain M A. 2017.Emergence of IntI1 associated blaVIM-2 gene cassettemediated carbapenem resistance in opportunistic pathogen Pseudomonas stutzeri. Emerging Microbes & Infections, 6(5):e29.
Brenner D J, Hickman-Brenner F W, Lee J V, Steigerwalt A G, Fanning G R, Hollis D G, Farmer Ⅲ J J, Weaver R E, Joseph S W, Seidler R J. 1983. Vibrio furnissii (formerly aerogenic biogroup of vibrio fluvialis), a new species isolated from human feces and the environment. Journal of Clinical Microbiology, 18(4):816-824.
Courtenay E S, Capp M W, Anderson C F, Record M T. 2000.Vapor pressure osmometry studies of osmolyte-protein interactions:implications for the action of osmoprotectants in vivo and for the interpretation of "osmotic stress" experiments in vitro. Biochemistry, 39(15):4 455-4 471.
DeLong E F, Preston C M, Mincer T, Rich V, Hallam S J, Frigaard N U, Martinez A, Sullivan M B, Edwards R, Brito B R, Chisholm S W, Karl D M. 2006. Community genomics among stratified microbial assemblages in the ocean's interior. Science, 311(5760):496-503.
Dong X, Wang H L, Zou P Z, Chen J Y, Liu Z, Wang X P, Huang J. 2017. Complete genome sequence of Vibrio campbellii strain 20130629003S01 isolated from shrimp with acute hepatopancreatic necrosis disease. Gut Pathogens, 9:31.
Dos Santos J P, Iobbi-Nivol C, Couillault C, Giordano G, Méjean V. 1998. Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species. Journal of Molecular Biology, 284(2):421-433.
Dunn A K, Stabb E V. 2008. Genetic analysis of trimethylamine N-oxide reductases in the light organ symbiont Vibrio fischeri ES114. Journal of Bacteriology, 190(17):5 814-5 823.
Fang J S, Zhang L, Bazylinski D A. 2010. Deep-sea piezosphere and piezophiles:geomicrobiology and biogeochemistry.Trends in Microbiology, 18(9):413-422.
Ge X L, Wexler A S, Clegg S L. 2011. Atmospheric amines-part I. A review. Atmospheric Environment, 45(3):524-546.
Ge Y, Zhu J, Ye X, Yang Y. 2017. Spoilage potential characterization of Shewanella and Pseudomonas isolated from spoiled large yellow croaker (Pseudosciaena crocea). Letters in Applied Microbiology, 64(1):86-93.
Gibb S W, Hatton A D. 2004. The occurrence and distribution of trimethylamine-N-oxide in Antarctic coastal waters.Marine Chemistry, 91(1-4):65-75.
Gillett M B, Suko J R, Santoso F O, Yancey P H. 1997.Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts:a high-pressure adaptation?Journal of Experimental Zoology, 279(4):386-391.
He H L, Chen X L, Zhang X Y, Sun C Y, Zou B C, Zhang Y Z. 2009. Novel use for the osmolyte trimethylamine Noxide:retaining the psychrophilic characters of coldadapted protease deseasin MCP-01 and simultaneously improving its thermostability. Marine Biotechnology, 11(6):710-716.
Jannasch H W, Jones G E. 1959. Bacterial populations in sea water as determined by different methods of enumeration.Limnology and Oceanography, 4(2):128-139.
Ji B Y, Gimenez G, Barbe V, Vacherie B, Rouy Z, Amrani A, Fardeau M L, Bertin P, Alazard D, Leroy S, Talla E, Ollivier B, Dolla A, Pradel N. 2013. Complete genome sequence of the piezophilic, mesophilic, sulfate-reducing bacterium Desulfovibrio hydrothermalis AM13T. Genome Announcements, 1(1):e00226-12.
Jian H H, Li S K, Tang X X, Xiao X. 2016. A transcriptome resource for the deep-sea bacterium Shewanella piezotolerans WP3 under cold and high hydrostatic pressure shock stress. Marine Genomics, 30:87-91.
Kato C, Nogi Y, Arakaw S. 2008. Isolation, cultivation, and diversity of deep-sea piezophiles. In:Michiels C, Bartlett D, Aersten A eds. High-pressure Microbiology. ASM Press, Washington, DC. p.203-217.
Lauro F M, Bartlett D H. 2008. Prokaryotic lifestyles in deep sea habitats. Extremophiles, 12(1):15-25.
Le Bihan T, Rayner J, Roy M M, Spagnolo L. 2013.Photobacterium profundum under pressure:a MS-based label-free quantitative proteomics study. PLoS One, 8(5):e60897.
Lee J V, Shread P, Furniss A L, Bryant T N. 1981. Taxonomy and description of Vibrio fluvialis sp. nov. (synonym group F vibrios, group EF6). Journal of Applied Bacteriology, 50(1):73-94.
Lee K M, Park Y, Bari W, Yoon M Y, Go J, Kim S C, Lee H I, Yoon S S. 2012. Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae. Journal of Biological Chemistry, 287(47):39 742-39 752.
Lidbury I D, Murrell J C, Chen Y. 2015. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium:implications for marine carbon and nitrogen cycling. The ISME Journal, 9(3):760-769.
Lidbury I, Murrell J C, Chen Y. 2014. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria.Proceedings of the National Academy of Sciences of the United States of America, 111(7):2 710-2 715.
Lucas S, Han J, Lapidus A, Cheng J F, Goodwin L A, Pitluck S, Peters L, Mikhailova N, Teshima H, Detter J C, Han C, Tapia R, Land M, Hauser L, Kyrpides N C, Ivanova N, Pagani I, Vannier P, Oger P, Bartlett D H, Noll K M, Woyke T, Jebbar M. 2012. Complete Genome Sequence of the Thermophilic, Piezophilic, Heterotrophic Bacterium Marinitoga piezophila KA3. Journal of Bacteriology, 194(21):5 974-5 975.
Martini S, Al Ali B, Garel M, Nerini D, Grossi V, Pacton M, Casalot L, Cuny P, Tamburini C. 2013. Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS One, 8(6):e66580.
McCrindle S L, Kappler U, McEwan A G. 2005. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.Advances in Microbial Physiology, 50:147-198.
Meyer J L, Dillard B A, Rodgers J M, Ritchie K B, Paul V J, Teplitski M. 2015. Draft genome sequence of Halomonas meridiana R1t3 isolated from the surface microbiota of the Caribbean Elkhorn coral Acropora palmata. Standards in Genomic Sciences, 10(1):75.
Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Takai K. 2015. Hadal biosphere:insight into the microbial ecosystem in the deepest ocean on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112(11):E1 230-E1 236.
Ohke Y, Sakoda A, Kato C, Sambongi Y, Kawamoto J, Kurihara T, Tamegai H. 2013. Regulation of cytochrome c- and quinol oxidases, and piezotolerance of their activities in the deep-sea piezophile Shewanella violacea DSS12 in response to growth conditions. Bioscience, Biotechnology, and Biochemistry, 77(7):1 522-1 528.
Parkes R J, Sellek G, Webster G, Martin D, Anders E, Weightman A J, Sass H. 2009. Culturable prokaryotic diversity of deep, gas hydrate sediments:first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG).Environmental microbiology, 11(12):3 140-3 153.
Pathom-Aree W, Nogi Y, Sutcliffe I C, Ward A C, Horikoshi K, Bull A T, Goodfellow M. 2006. Dermacoccus abyssi sp.nov., a piezotolerant actinomycete isolated from the Mariana Trench. International Journal of Systematic and Evolutionary Microbiology, 56(6):1 233-1 237.
Petrov E, Rohde P R, Cornell B, Martinac B. 2012. The protective effect of osmoprotectant TMAO on bacterial mechanosensitive channels of small conductance MscS/MscK under high hydrostatic pressure. Channels (Austin), 6(4):262-271.
Proctor L M, Gunsalus R P. 2000. Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate:ecological implications.Environmental Microbiology, 2(4):399-406.
Ringø E, Stenberg E, Strøm A R. 1984. Amino acid and lactate catabolism in trimethylamine oxide respiration of alteromonas putrefaciens NCMB-1735. Applied and Environmental Microbiology, 47(5):1 084-1 089.
Saad-Nehme J, Silva J L, Meyer-Fernandes J R. 2001.Osmolytes protect mitochondrial F0F1-ATPase complex against pressure inactivation. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1546(1):164-170.
Salazar G, Cornejo-Castillo F M, Benítez-Barrios V, FraileNuez E, Álvarez-Salgado X A, Duarte C M, Gasol J M, Acinas S G. 2016. Global diversity and biogeography of deep-sea pelagic prokaryotes. The ISME Journal, 10(3):596-608.
Seibel B A, Walsh P J. 2002. Trimethylamine oxide accumulation in marine animals:relationship to acylglycerol storage. The Journal of Experimental Biology, 205(Pt 3):297-306.
Simon-Colin C, Raguénès G, Cozien J, Guezennec J G. 2008.Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. Journal of Applied Microbiology, 104(5):1 425-1 432.
Smith R S, Pineiro S A, Singh R, Romberg E, Labib M E, Williams H N. 2004. Discrepancies in bacterial recovery from dental unit water samples on R2A medium and a commercial sampling device. Current Microbiology, 48(4):243-246.
Sogin M L, Morrison H G, Huber J A, Mark Welch D, Huse S M, Neal P R, Arrieta J M, Herndl G J. 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences of the United States of America, 103(32):12 115-12 120.
Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A. 2009. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environmental Microbiology, 11(8):1 983-1 997.
Tamburini C, Boutrif M, Garel M, Colwell R R, Deming J W. 2013. Prokaryotic responses to hydrostatic pressure in the ocean-a review. Environmental Microbiology, 15(5):1 262-1 274.
Tamegai H, Nishikawa S, Haga M, Bartlett D H. 2012. The respiratory system of the piezophile Photobacterium profundum SS9 grown under various pressures. Bioscience, Biotechnology, and Biochemistry, 76(8):1 506-1 510.
Tarn J, Peoples L M, Hardy K, Cameron J, Bartlett D H. 2016.Identification of free-living and particle-associated microbial communities present in hadal regions of the mariana trench. Frontiers in Microbiology, 7:665.
Tindall B J, Rosselló-Móra R, Busse H J, Ludwig W, Kämpfer P. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 60(1):249-266.
Ufnal M, Zadlo A, Ostaszewski R. 2015. TMAO:a small molecule of great expectations. Nutrition, 31(11-12):1 317-1 323.
Vezzi A, Campanaro S, D'Angelo M, Simonato F, Vitulo N, Lauro F M, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett D H, Valle G. 2005. Life at depth:Photobacterium profundum genome sequence and expression analysis. Science, 307(5714):1 459-1 461.
Wang Q Y, Liu Q, Ma Y, Zhou L Y, Zhang Y X. 2007. Isolation, sequencing and characterization of cluster genes involved in the biosynthesis and utilization of the siderophore of marine fish pathogen Vibrio alginolyticus. Archives of Microbiology, 188(4):433-439.
Xiong L, Jian H H, Zhang Y X, Xiao X. 2016. The two sets of DMSO respiratory systems of Shewanella piezotolerans WP3 are involved in deep sea environmental adaptation.Frontiers in Microbiology, 7:1418.
Yancey P H, Clark M E, Hand S C, Bowlus R D, Somero G N. 1982. Living with water stress:evolution of osmolyte systems. Science, 217(4566):1 214-1 222.
Yancey P H, Fyfe-Johnson A L, Kelly R H, Walker V P, Aunon M T. 2001. Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep-sea teleosts.Journal of Experimental Zoology, 289(3):172-176.
Yancey P H, Gerringer M E, Drazen J C, Rowden A A, Jamieson A. 2014. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths.Proceedings of the National Academy of Sciences of the United States of America, 111(12):4 461-4 465.
Yin Q J, Zhang W J, Qi X Q, Zhang S D, Jiang T, Li X G, Chen Y, Santini C L, Zhou H, Chou I M, Wu L F. 2018. High hydrostatic pressure inducible trimethylamine N-oxide reductase improves the pressure tolerance of piezosensitive bacteria Vibrio fluvialis. Frontiers in Microbiology, 8:2646.
Yoo S H, Kim M J, Roh K H, Kim S H, Park D W, Sohn J W, Yoon Y K. 2012. Liver abscess caused by Brevundimonas vesicularis in an immunocompetent patient. Journal of Medical Microbiology, 61(10):1 476-1 479.
Yoon S H, Ha S M, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud:a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5):1 613-1 617.
Zhang S D, Barbe V, Garel M, Zhang W J, Chen H T, Santini C L, Murat D, Jing H M, Zhao Y, Lajus A, Martini S, Pradel N, Tamburini C, Wu L F. 2014. Genome Sequence of Luminous Piezophile Photobacterium phosphoreum ANT-2200. Genome Announcement, 2(2):e00096-14.
Zhang S D, Santini C L, Zhang W J, Barbe V, Mangenot S, Guyomar C, Garel M, Chen H T, Li X G, Yin Q J, Zhao Y, Armengaud J, Gaillard J C, Martini S, Pradel N, Vidaud C, Alberto F, Médigue C, Tamburini C, Wu L F. 2016.Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200. Extremophiles, 20(3):301-310.
Zhu Y J, Jameson E, Parslow R A, Lidbury I, Fu T T, Dafforn T R, Schäfer H, Chen Y. 2014. Identification and characterization of trimethylamine N-oxide (TMAO)demethylase and TMAO permease in Methylocella silvestris BL2. Environmental Microbiology, 16(10):3 318-3 330.
Zou Q, Bennion B J, Daggett V, Murphy K P. 2002. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea.Journal of the American Chemical Society, 124(7):1 192-1 202.
Copyright © Haiyang Xuebao