Cite this paper:
ZHANG Cunjie, HAN Xueshuang, LIN Xiaopei. Quantifying the non-conservative production of potential temperature over the past 22 000 years[J]. Journal of Oceanology and Limnology, 2019, 37(2): 410-422

Quantifying the non-conservative production of potential temperature over the past 22 000 years

ZHANG Cunjie1, HAN Xueshuang2, LIN Xiaopei1
1 Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China;
2 Research Vessel Center, Ocean University of China, Qingdao 266100, China
Abstract:
The energy budgets of the ocean play a crucial role in the analysis of climate change. Potential temperature is traditionally used as a conservative quantity to express variations associated with "heat" in oceanography, such as the heat content and heat transport. However, potential temperature is usually not conserved during turbulent mixing, so the use of conservative temperature is more accurate. Based on climatological simulations under the modern and Last Glacial Maximum (LGM;~21 ka; ka=thousand years ago), as well as a transient climate simulation of the past 22 000 years, we quantify the errors induced by the neglect of the non-conservation of potential temperature in paleo-climate research for the first time. The temperature error reaches 0.9℃ near the coasts affected by river discharges but is much smaller in the open oceans, typically 0.03℃ above the main thermocline and less than 0.01℃ elsewhere. The error of the ocean heat content (OHC) is roughly 3×1022 J and is relatively steady over the past 22 000 years. However, the OHC increases to six times the original value during the last glacial termination from 20 ka to 7 ka. As a result, the relative OHC error decreases from 1.2% in the LGM climate to 0.14% in the modern climate. The error of the ocean meridional heat transport (OMHT) is generally smaller than 0.005 PW (1 PW=1015 W), with very small temporal variations (typically 0.000 4 PW), and induces a relative OMHT error of typically 0.3% over the past 22 000 years. Therefore, the neglect of the non-conservation of potential temperature induces a relative error of generally less than 1% in the analyses of basin-scale climate variations.
Key words:    conservative temperature|potential temperature|ocean heat content|ocean heat transport|paleoclimate   
Received: 2018-03-23   Revised: 2018-05-08
Tools
PDF (2155 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHANG Cunjie
Articles by HAN Xueshuang
Articles by LIN Xiaopei
References:
Batchelor G K. 1967. An Introduction to Fluid Dynamics.Cambridge University Press, Cambridge. 615p.
Bryan K. 1962. Measurements of meridional heat transport by ocean currents. Journal of Geophysical Research, 67(9):3 403-3 414.
Bryden H L, Imawaki S. 2001. Ocean heat transport. In:Siedler G, Church J, Gould J eds. Ocean circulation and climate:Observing and Modelling the Global Ocean.Academic Press, San Fransisco CA, USA. p.455-474.
Chen X, Tung K K. 2014. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.Science, 345(6199):897-903.
Denton G H, Anderson R F, Toggweiler J R, Edwards R L, Schaefer J M, Putnam A E. 2010.The last glacial termination. Science, 328(5986):1 652-1 656.
Dyke A S, Prest V K. 1987. Late Wisconsinan and Holocene history of the Laurentide ice sheet. Géographie Physique et Quaternaire, 41(2):237-263.
Ferrari R, Ferreira D. 2011. What processes drive the ocean heat transport? Ocean Modelling, 38(3-4):171-186.
Fischer N, Jungclaus J H. 2010.Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model. Climate of the Past, 6(2):155-168.
Fofonoff N. 1962. Physical properties of sea-water. The Sea, 1:3-30.
Gill A E. 1982. Atmosphere-Ocean Dynamics. Academic Press, New York. 662p.
Graham F S, McDougall T J. 2013. Quantifying the nonconservative production of conservative temperature, potential temperature, and entropy. J. Phys. Oceanogr., 43(5):838-862.
Gu D F, Philander S G H. 1997. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275(5301):805-807.
Hatzianastassiou N, Matsoukas C, Hatzidimitriou D, Pavlakis C, Drakakis M, Vardavas I. 2004. Ten year radiation budget of the Earth:1984-93. International Journal of Climatology, 24(14):1 785-1 802.
He F. 2011. Simulating Transient Climate Evolution of the Last Deglaciation with CCSM3. University of WisconsinMadison, Wisconsin. 171p.
IOC, SCOR, IAPSO. 2010.The international thermodynamic equation of seawater-2010:calculation and use of thermodynamic properties. In:Intergovern-mental Oceanographic Commission, Manuals and Guides No. 56. Paris:IOC, SCOR, IAPSO, 196.
IPCC. 2007. Climate Change 2007:Synthesis Report.Contribution of Working Groups I, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Cambridge. 104p.
Jackson L C, Kahana R, Graham T, Ringer M A, Woollings T, Mecking J V, Wood R A. 2015. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45(11-12):3 299-3 316.
Kleman J, Jansson K, De Angelis H, Stroeven A P, Hättestrand C, Alm G, Glasser N. 2010.North American Ice Sheet build-up during the last glacial cycle, 115-21 kyr.Quaternary Science Reviews, 29(17-18):2 036-2 051.
Macdonald A M, Baringer M O. 2013. Ocean heat transport.International Geophysics, 103:759-785.
Marschall J, Plumb R A. 2008. Atmosphere, Ocean, and Climate Dynamics. Elsevier Academic Press, Burlington. 344p.
Marson J M, Wainer I, Mata M M, Liu Z. 2014. The impacts of deglacial meltwater forcing on the South Atlantic Ocean deep circulation since the Last Glacial Maximum. Climate of the Past, 10(5):1 723-1 734.
McCreary Jr J P, Lu P. 1994. Interaction between the subtropical and equatorial ocean circulations:the subtropical cell. J.Phys. Oceanogr., 24(2):466-497.
McDougall T J, Barker P M. 2011. Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox.SCOR/IAPSO WG, 127:1-28.
McDougall T J. 2003. Potential enthalpy:a conservative oceanic variable for evaluating heat content and heat fluxes. J Phys Oceanogr, 33:945-963.
Olbers D, Willebrand J, Eden C. 2012. Ocean dynamics.Springer, Heidelberg. 704p.
Otto-Bliesner B L, Brady E C, Clauzet G, Tomas R, Levis S, Kothavala Z. 2006. Last glacial maximum and Holocene climate in CCSM3. Journal of Climate, 19(11):2 526-2 544.
Peltier W R. 2004. Global glacial isostasy and the surface of the ice-age earth:the ICE-5G (VM2) model and GRACE.Annual Review of Earth and Planetary Sciences, 32(1):111-149.
Stouffer R J, Yin J, Gregory J M, Dixon K W, Spelman M J, Hurlin W, Weaver A J, Eby M, Flato G M, Hasumi H, Hu A, Jungclaus J H, Kamenkovich I V, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier W R, Robitaille D Y, Sokolov A, Vettoretti G, Weber S L. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate, 19(8):1 365-1 387.
Tailleux R. 2015. Observational and energetics constraints on the non-conservation of potential/conservative temperature and implications for ocean modelling. Ocean Modelling, 88:26-37.
Toucanne S, Zaragosi S, Bourillet J F, Cremer M, Eynaud F, Van Vliet-Lanoë B, Penaud A, Fontanier C, Turon J L, Cortijo E. 2009. Timing of massive ‘Fleuve Manche’ discharges over the last 350 kyr:insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2. Quaternary Science Reviews, 28(13-14):1 238-1 256.
Trenberth K E, Fasullo J T. 2013. An apparent hiatus in global warming? Earth's Future, 1(1):19-32.
Warren B A. 1999. Approximating the energy transport across oceanic sections. Journal of Geophysical Research:Oceans, 104(C4):7 915-7 919.
Yang H J, Li Q, Wang K, Sun Y, Sun D. 2015a. Decomposing the meridional heat transport in the climate system.Climate Dynamics, 44(9-10):2 751-2 768.
Yang H J, Zhao Y Y, Liu Z Y, Li Q, He F, Zhang Q. 2015b. Heat transport compensation in atmosphere and ocean over the past 22,000 years. Sci. Rep., 5:16 661.
Zhang R, Delworth T L. 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18(12):1 853-1 860.
Copyright © Haiyang Xuebao