Cite this paper:
LI Xiaohong, XIAO Hui, ZHANG Wenjun, LI Yongqian, TANG Xuexi, DUAN Jizhou, YANG Zhibo, WANG Jing, GUAN Fang, DING Guoqing. Analysis of cultivable aerobic bacterial community composition and screening for facultative sulfate-reducing bacteria in marine corrosive steel[J]. Journal of Oceanology and Limnology, 2019, 37(2): 600-614

Analysis of cultivable aerobic bacterial community composition and screening for facultative sulfate-reducing bacteria in marine corrosive steel

LI Xiaohong1,2,3, XIAO Hui1, ZHANG Wenjun4, LI Yongqian1,2,3, TANG Xuexi1, DUAN Jizhou2,3, YANG Zhibo1, WANG Jing1,2,3, GUAN Fang2,3, DING Guoqing5
1 College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
2 Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
3 Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China;
4 Ningbo Tianhe Aquatic Ecosystems Engineering Co. Ltd., Ningbo 315000, China;
5 Qingdao Research Institute for Marine Corrosion, Qingdao 266000, China
Abstract:
Anaerobic, aerobic, and facultative bacteria are all present in corrosive environments. However, as previous studies to address corrosion in the marine environment have largely focused on anaerobic bacteria, limited attention has been paid to the composition and function of aerobic and facultative bacteria in this process. For analysis in this study, ten samples were collected from rust layers on steel plates that had been immersed in seawater for different periods (i.e., six months and eight years) at Sanya and Xiamen, China. The cultivable aerobic bacterial community structure as well as the number of sulfate-reducing bacteria (SRB) were analyzed in both cases, while the proportion of facultative SRB among the isolated aerobic bacteria in each sample was also evaluated using a novel approach. Bacterial abundance results show that the proportions are related to sea location and immersion time; abundances of culturable aerobic bacteria (CAB) and SRB from Sanya were greater in most corrosion samples than those from Xiamen, and abundances of both bacterial groups were greater in samples immersed for six months than for eight years. A total of 213 isolates were obtained from all samples in terms of CAB community composition, and a phylogenetic analysis revealed that the taxa comprised four phyla and 31 genera. Bacterial species composition is related to marine location; the results show that Firmicutes and Proteobacteria were the dominant phyla, accounting for 98.13% of the total, while Bacillus and Vibrio were the dominant genera, accounting for 53.06% of the total. An additional six facultative SRB strains were also screened from the isolates obtained and were found to encompass the genus Vibrio (four strains), Staphylococcus (one strain), and Photobacterium (one strain). It is noteworthy that mentions of Photobacterium species have so far been absent from the literature, both in terms of its membership of the SRB group and its relationship to corrosion.
Key words:    marine corrosive steel|cultivable aerobic bacteria|facultative sulfate-reducing bacteria|bacterial community composition|16S rRNA gene sequencing   
Received: 2018-01-01   Revised: 2018-02-22
Tools
PDF (499 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LI Xiaohong
Articles by XIAO Hui
Articles by ZHANG Wenjun
Articles by LI Yongqian
Articles by TANG Xuexi
Articles by DUAN Jizhou
Articles by YANG Zhibo
Articles by WANG Jing
Articles by GUAN Fang
Articles by DING Guoqing
References:
Alazard D, Badillo C, Fardeau M L, Cayol J L, Thomas P, Roldan T, Tholozan J L, Ollivier B. 2007. Tindallia texcoconensis, sp. nov. a new haloalkaliphilic bacterium isolated from lake Texcoco, Mexico. Extremophiles, 11(1):33-39.
Angell P, Urbanic K. 2000. Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corros. Sci., 42(5):897-912.
Ashassi-Sorkhabi H, Moradi-Haghighi M, Zarrini G. 2012. The effect of pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel. Mater. Sci. Eng.:C, 32(2):303-309.
Babul G P, Subramanyam P, Sreenivasulu B, Paramageetham Ch. 2014. Isolation and identification of sulfate reducing bacterial strains indigenous to sulphur rich barite mines.Int. J. Curr. Microbiol. Appl. Sci., 3(7):788-793.
Beech I B, Sunner J. 2004. Biocorrosion:towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol., 15(3):181-186.
Benbouzid-Rollet N D, Conte M, Guezennec J, Prieur D. 1991. Monitoring of a Vibrio natriegens and Desulfovibrio vulgaris marine aerobic biofilm on a stainless steel surface in a laboratory tubular flow system. J. Appl. Bacteriol., 71(3):244-251.
Bermont-Bouis D, Janvier M, Grimont P A D, Dupont I, Vallaeys T. 2007. Both sulfate-reducing bacteria and enterobacteriaceae take part in marine biocorrosion of carbon steel. J. Appl. Microbiol., 102(1):161-168.
Bolton N, Critchley M, Fabien R, Cromar N, Fallowfield H. 2010.Microbially influenced corrosion of galvanized steel pipes in aerobic water systems. J. Appl. Microbiol., 109(1):239-247.
Bott T R. 1996. 96/03046-fouling of heat exchangers. Fuel Energ. Abstr., 37(3):211.
Boudaud N, Coton M, Coton E, Pineau S, Travert J, Amiel C. 2010.Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena. J. Appl.Microbiol., 109(1):166-179.
Çetin D, Bilgiç S, Donmez G. 2007. Biocorrosion of low alloy steel by Desulfotomaculum sp. and effect of biocides on corrosion control. ISIJ Int., 47(7):1 023-1 028.
Chen Y W. 2014. The study on diversity of bacterial community in inner rust layer of carbon steel immersed in Zhonggang marine water of Qingdao and electrically active of several bacteria. Ocean University China, Beijing, China. (in Chinese)
Cheng S, Lau K T, Chen S G, Chang X T, Liu T, Yin S Y. 2010.Microscopical observation of the marine bacterium vibrio natriegeus growth on metallic corrosion. Mater. Manuf.Process., 25(5):293-297.
Dang H Y, Chen R P, Wang L, Shao S D, Dai L Q, Ye Y, Guo L Z, Huang G Q, Klotz M G. 2011. Molecular characterization of putative biocorroding microbiota with a novel niche detection of epsilon-and zetaproteobacteria in pacific ocean coastal seawaters. Environ. Microbiol., 13(11):3 059-3 074.
Dang H Y, Lovell C R. 2002a. Numerical dominance and phylotype diversity of marine Rhodobacter species during early colonization of submerged surfaces in coastal marine waters as determined by 16S ribosomal DNA sequence analysis and fluorescence in situ hybridization.Appl. Environ. Microbiol., 68(2):496-504.
Dang H Y, Lovell C R. 2002b. Seasonal dynamics of particleassociated and free-living marine Proteobacteria in a salt marsh tidal creek as determined using fluorescence in situ hybridization. Environ. Microbiol., 4(5):287-295.
Dong Q, Shi H C, Liu Y C. 2017. Microbial character related sulfur cycle under dynamic environmental factors based on the microbial population analysis in sewerage system.Front. Microbiol., 8:64.
Dowling N J E, Guezennec J, Lemoine M L, Tunlid A, White D C. 1988. Analysis of carbon steels affected by bacteria using electrochemical impedance and direct current techniques. Corrosion, 44(12):869-874.
Du X Q, Duan J Z, Zhai X F, Luan X, Zhang J, Hou B R. 2013. Corrosion behavior of 316l stainless steel influenced by iron-reducing bacteria Shewanella algae biofilms. J.Chin. Soc. Corros. Protect., 33(5):363-370. (in Chinese with English abstract)
Eduok U, Khaled M, Khalil A, Suleiman R, El Ali B. 2016. Probing the corrosion inhibiting role of a thermophilic bacillus licheniformis biofilm on steel in a saline axenic culture. RSC Adv., 6(22):18 246-18 256.
Gall J L. 1975. Bacteries sulfato-reductrices:enzymologie de la reduction dissimilative des sulfates. Plant and Soil, 43(1-3):115-124.
Garrity G M, Bell J A, Lilburn T G. 2004. Taxonomic outline of the prokaryotes. In:Garrity GM ed. Bergey's Manual of Systematic Bacteriology. 2nd ed. Springer, New York.
Gibson G R. 1990. Physiology and ecology of the sulphatereducing bacteria. J. Appl. Bacteriol., 69(6):767-797.
Guo P, Yan M, Huang G Q, Du M. 2006. A study on microbiologically influenced corrosion of a carbon steel in seawater. Corros. Sci. Prot. Technol., 18(6):410-413.(in Chinese with English abstract)
Holmes D E, Bond D R, O'Neil R A, Reimers C E, Tender L R, Lovley D R. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol., 48(2):178-190.
Holmström C, Kjelleberg S. 1999. Marine pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol.Ecol., 30(4):285-293.
Iverson W P. 1966. Direct evidence for the cathodic depolarization theory of bacterial corrosion. Science, 151(3713):986-988.
Iverson W P. 1968. Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans. Nature, 217(5135):1 265-1 267.
Jones P R, Cottrell M T, Kirchman D L, Dexter S C. 2007. Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb. Ecol., 53(1):153-162.
King R A, Miller J D A. 1971. Corrosion by the sulphatereducing bacteria. Nature, 233(5320):491-492.
Kip N, van Veen J A. 2015. The dual role of microbes in corrosion. ISME J., 9(3):542-551.
Kirchman D L. 2002. The ecology of cytophaga-flavobacteria in aquatic environments. FEMS Microbiol. Ecol., 39(2):91-100.
Lanneluc I, Langumier M, Sabot R, Jeannin M, Refait P, Sablé S. 2015. On the bacterial communities associated with the corrosion product layer during the early stages of marine corrosion of carbon steel. Int. Biodeter. Biodegr., 99(1):55-65.
Lee J W, Nam J H, Kim Y H, Lee K H, Lee D H. 2008. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J. Microbiol., 46(2):174-182.
Li H B, Zhou E Z, Zhang D W, Xu D K, Xia J, Yang C G, Feng H, Jiang Z H, Li X G, Gu T Y, Yang K. 2016. Microbiologically influenced corrosion of 2707 hyperduplex stainless steel by marine Pseudomonas aeruginosa biofilm. Sci. Rep., 6:20 190.
Li K, Whitfield M, van Vliet K J. 2013. Beating the bugs:roles of microbial biofilms in corrosion. Corros. Rev., 31(3-6):73-84.
Li X H, Duan J Z, Xiao H, Li Y Q, Liu H X, Guan F, Zhai X F. 2017. Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen seawaters in China via method of illumina MiSeq sequencing.Front. Microbiol., 8:1 737.
Little B, Wagner P, Hart K, Ray R, Lavoie D, Nealson K, Aguilar C. 1997. The role of metal-reducing bacteria in microbiologically influenced corrosion. Corrosion, 97:1-11.
Liu X Y, Jensen P R, Workman M. 2012. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus. Bioresource Technol., 104(1):579-586.
Liu Y J, Tian X P, Huang X F, Long L J, Zhang S. 2014. Diversity of cultivable bacteria isolated from marine sediment environments in South China Sea. Microbiol.China, 41(4):661-673. (in Chinese with English abstract)
Lopes F A, Morin P, Oliveira R, Melo L F. 2006. Interaction of desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. J. Appl.Microbiol., 101(5):1 087-1 095.
Luan X, Duan J Z, Chen Z M. 2012. Diversity of bacterial community on the surface of Q235 Steel in temperate coastal marine waters. Period. Ocean Univ. China, 42(S2):107-115. (in Chinese with English abstract)
Mansfeld F. 2007. The interaction of bacteria and metal surfaces. Electrochim. Acta, 52(27):7 670-7 680.
Marez A, Tellier E, Leclerc H. 1971. Sulfate reducing vibrios and biological corrosion. Anna. Inst. Pasteur. Lille., 22:137-176.
Marques J M, de Almeida F P, Lins U, Seldin L, Korenblum E. 2012. Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor. World J. Microbiol. Biotechnol., 28(6):2 355-2 363.
McBeth J M, David E. 2016. In situ microbial community succession on mild steel in estuarine and marine environments:exploring the role of iron-oxidizing bacteria. Front. Microbiol., 7:767.
Meng L, Liu H, Bao M T, Sun P Y. 2016. Microbial community structure shifts are associated with temperature, dispersants and nutrients in crude oil-contaminated seawaters. Mar. Pollut. Bull., 111(1-2):203-212.
Ministry of Chemical Industry of the People's Republic of China. 1993. GB/T 14643.5-1993 Industrial Circulating Cooling Water Sulfate-Reducing Bacteria-MPN Test.China Standards Press, Beijing. (in Chinese)
Moi I M, Roslan N N, Leow A T C, Ali M S M, Rahman R N Z R, Rahimpour A, Sabri S. 2017. The biology and the importance of Photobacterium species. Appl. Microbiol.Biot., 101(11):4 371-4 385.
Moradi M, Song Z L, Tao X. 2015a. Introducing a novel bacterium, Vibrio neocaledonicus sp., with the highest corrosion inhibition efficiency. Electrochem. Commun., 51:64-68.
Moradi M, Song Z L, Yang L J, Jiang J J, He J. 2014. Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behaviour of 2205 duplex stainless steel.Corros. Sci., 84(3):103-112.
Moradi M, Xiao T, Song Z L. 2015b. Investigation of corrosion inhibitory process of marine Vibrio neocaledonicus sp.bacterium for carbon steel. Corros. Sci., 100:186-193.
Neriagonzález I, Wang E T, Ramírez F, Romero J M, Hernández-Rodríguez C. 2006. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe, 12(3):122-133.
Nikolaev Y A, Plankunov V K. 2007. Biofilm-"city of microbes" or an analogue of multicellular organisms? Microbiology, 76(2):125-138.
Paarup M, Friedrich M W, Tindall B J, Finster K. 2006. Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum. Anton. Leeuw., 89(1):55-69.
Païssé S, Ghiglione J F, Marty F, Abbas B, Gueuné H, Amaya J M S, Muyzer G, Quillet L. 2013. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures. Appl. Microbiol. Biot., 97(16):7 493-7 504.
Palaniappan B, Toleti S R. 2016. Characterization of microfouling and corrosive bacterial community of a firewater distribution system. J. Biosci. Bioeng., 121(4):435-441.
Parthipan P, Babu T G, Anandkumar B, Rajasekar A. 2017. Biocorrosion and its impact on carbon steel API 5LX by Bacillus subtilis A1 and Bacillus cereus A4 isolated from Indian crude oil reservoir. J. Bio-Tribo-Corros., 3:32.
Pillay C, Lin J. 2013. Metal corrosion by aerobic bacteria isolated from stimulated corrosion systems:effects of additional nitrate sources. Int. Biodeter. Biodegr., 83(9):158-165.
Ponmariappan S, Maruthamuthu S, Palaniappan R. 2004. Inhibition of corrosion of mild steel by staphylococcus sp.Trans. SAEST, 39(4):99-108.
Prasad S, Manasa P, Buddhi S, Tirunagari P, Begum Z, Rajan S, Shivaji S. 2014. Diversity and bioprospective potential(cold-active enzymes) of cultivable marine bacteria from the subarctic glacial fjord, Kongsfjorden. Curr. Microbiol., 68(2):233-238.
Qu Q, He Y, Wang L, Xu H T, Li L, Chen Y J, Ding Z T. 2015. Corrosion behavior of cold rolled steel in artificial seawater in the presence of Bacillus subtilis C2. Corros.Sci., 91(3):321-329.
Rao T S. 2010.Comparative effect of temperature on biofilm formation in natural and modified marine environment.Aquat. Ecol., 44(2):463-478.
Rath K, Mishra B, Vuppu S. 2012. Bio degrading ability of organo-sulphur compound of a newly isolated microbe Bacillus sp. KS1 from the oil contaminated soil. Arch.Appl. Sci. Res., 4(1):465-471.
Sánchez-Porro C, Mellado E, Bertoldo C, Antranikian G, Ventosa A. 2003. Screening and characterization of the protease cp1 produced by the moderately halophilic bacterium Pseudoalteromonas sp. strain cp76.Extremophiles, 7(3):221-228.
Selvaraj H, Chandrasekaran K, Murugan R, Sundaram M. 2017. An integrated biological and electrochemical process for recovery of sulfur from an industrial effluent contaminated pond water and its preliminary application in high performance battery. Sep. Purif. Technol., 180:133-141.
Slightom R N, Buchan A. 2009. Surface colonization by marine roseobacters:integrating genotype and phenotype.Appl. Environ. Microbiol., 75(19):6 027-6 037.
Sun H F, Shi B Y, Lytle DA, Bai Y H, Wang D S. 2014. Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system. Environ. Sci.Processes Impacts, 16(3):576-585.
Vigneron A, Alsop E B, Chambers B, Lomans B P, Head I M, Tsesmetzis N. 2016. Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl. Environ. Microbiol., 82(8):2 545-2 554.
Wadood H Z, Rajasekar A, Ting Y P, Sabari A N. 2015. Role of Bacillus subtilis and Pseudomonas aeruginosa on corrosion behaviour of stainless steel. Arab. J. Sci. Eng., 40(7):1 825-1 836.
Wang H B, Hu C, Hu X X, Yang M, Qu J H. 2012. Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Res., 46(4):1 070-1 078.
Wang Y P. 2014. Study on isolation and diversity of culturable anaerobic bacteria in intertidal sediment of Qingdao.Ocean University China, China. (in Chinese)
Xu D K, Li Y C, Gu T Y. 2016. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 110:52-58.
Xu D K, Li Y C, Song F M, Gu T Y. 2013. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros. Sci., 77(12):385-390.
Yang Y H, Xiao W L, Chai K, Wu J Y. 2011. Composition of bacteria in corrosion product of carbon steel with different carbon content immersed in seawater for different time. J.Chin. Soc. Corros. Protect., 31(4):294-298. (in Chinese with English abstract)
Yin Y S, Cheng S, Chen S G, Tian J T, Liu T, Chang X T. 2009. Microbially influenced corrosion of 303 stainless steel by marine bacterium Vibrio natriegens:(Ⅱ) corrosion mechanism. Mater. Sci. Eng.:C, 29(3):756-760.
Yu Y, Wang J H, Fang S T, Jiang Z Z, Zhou X Q, Xia C H. 2014 Identification of biofouling biofilms bacterium Pseudoalteromonas issachenkonii YT1305-1 and analysis on chemical constitutents of its metabolites. Microbiol. China, 41(7):1 278-1 286. (in Chinese with English abstract)
Yuan S J, Pehkonen S O. 2007. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria:AFM and XPS study. Colloid.Surface B, 59(1):87-99.
Zhang P Y, Xu D K, Li Y C, Yang K, Gu T Y. 2015. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 101:14-21.
Zhang T, Fang H H. 2001. Phylogenetic diversity of a srb-rich marine biofilm. Appl. Microbiol. Biot., 57(3):437-440.
Zhang Y, Pei G S, Chen L, Zhang W W. 2016. Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface. Biofouling, 32(7):725-736.
Zuo R J. 2007. Biofilms:strategies for metal corrosion inhibition employing microorganisms. Appl. Microbiol.Biot., 76(6):1 245-1 253.
Copyright © Haiyang Xuebao