Cite this paper:
LU Zhen, SHAN Xiujuan, JI Chenglong, ZHAO Jianmin, WU Huifeng. Proteomic responses induced by metal pollutions in oysters Crassostrea sikamea[J]. Journal of Oceanology and Limnology, 2019, 37(2): 685-693

Proteomic responses induced by metal pollutions in oysters Crassostrea sikamea

LU Zhen1,3, SHAN Xiujuan2,4, JI Chenglong1,2, ZHAO Jianmin1, WU Huifeng1,2
1 Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research(YIC), Chinese Academy of Sciences(CAS);Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, China;
2 Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture;Shandong Provincial Key Laboratory of Fishery Resources and Ecological Environment, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Abstract:
There exist severe metal pollutions along the Jiulongjiang estuary in South China. In order to unravel the biological effects caused by metal pollutions, proteomic responses were investigated by two-dimensional electrophoresis-based proteomics in oysters Crassostrea sikamea from metal pollution sites, Jinshan (JS) and Baijiao (BJ), and a relatively clean site, Jiuzhen (JZ), along the Jiulongjiang estuary. Results indicated that metal pollutions mainly induced cellular injuries, oxidative and immune stresses, and disturbed ion homeostasis in oysters C. sikamea from both JS and BJ sites via differential pathways. Furthermore, metal pollution enhanced transcriptional initiation in oysters from JS site. In addition, the Cu and Fe pollution might be indicated by the 78 kDa glucose regulated protein and ferritin GF1 in oysters C. sikamea, respectively. The study confirms that proteomics is a promising approach to characterize the underlying mechanisms of responses to metal pollution in oysters.
Key words:    metal pollution|Crassostrea sikamea|biological effect|proteomics   
Received: 2018-03-20   Revised: 2018-05-02
Tools
PDF (498 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LU Zhen
Articles by SHAN Xiujuan
Articles by JI Chenglong
Articles by ZHAO Jianmin
Articles by WU Huifeng
References:
Bertin G, Averbeck D. 2006. Cadmium:cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie, 88(11):1 549-1 559.
Campos A, Tedesco S, Vasconcelos V, Cristobal S. 2012. Proteomic research in bivalves:towards the identification of molecular markers of aquatic pollution. J. Proteomics, 75(14):4 346-4 359.
Čapková M, Houštěk J, Hansíková H, Hainer V, Kunešová M, Zeman J. 2002. Activities of cytochrome c oxidase and citrate synthase in lymphocytes of obese and normalweight subjects. Int. J. Obes., 26(8):1 110-1 117.
Cappello T, Mauceri A, Corsaro C, Maisano M, Parrino V, Lo Paro G, Messina G, Fasulo S. 2013. Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR-based metabolomics. Mar.Pollut. Bullet., 77(1-2):132-139.
Cecconi I, Scaloni A, Rastelli G, Moroni M, Vilardo P G, Costantino L, Cappiello M, Garland D, Carper D, Petrash J M, Del Corso A, Mura U. 2002. Oxidative modification of aldose reductase induced by copper ion. Definition of the metal-protein interaction mechanism. J. Biol. Chem., 277(44):42 017-42 027.
Dorts J, Kestemont P, Dieu M, Raes M, Silvestre F. 2011. Proteomic response to sublethal cadmium exposure in a sentinel fish species, Cottus gobio. J. Proteome Res., 10(2):470-478.
Durand J P, Goudard F, Pieri J, Escoubas J M, Schreiber N, Cadoret J P. 2004. Crassostrea gigas ferritin:cDNA sequence analysis for two heavy chain type subunits and protein purification. Gene, 338(2):187-195.
Esperanza M, Seoane M, Rioboo C, Herrero C, Cid Á. 2015. Chlamydomonas reinhardtii cells adjust the metabolism to maintain viability in response to atrazine stress. Aquat.Toxicol., 165:64-72.
Exton J H. 2002. Regulation of phospholipase D. FEBS Lett., 531(1):58-61.
Fontaine J M, Rest J S, Welsh M J, Benndorf R. 2003. The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress Chaperon., 8(1):62-69.
Freedman R B, Hirst T R, Tuite M F. 1994. Protein disulphide isomerase:building bridges in protein folding. Trends Biochem. Sci., 19(8):331-336.
Fujinoki M, Ueda M, Inoue T, Yasukawa N, Inoue R, IshimodaTakagi T. 2006. Heterogeneity and tissue specificity of tropomyosin isoforms from four species of bivalves.Comp. Biochem. Physiol. B Biochem. Mol. Biol., 143(4):500-506.
Gao Y P, Gillen C M, Wheatly M G. 2006. Molecular characterization of the sarcoplasmic calcium-binding protein (SCP) from crayfish Procambarus clarkii. Comp.Biochem. Physiol. B Biochem. Mol. Biol., 144(4):478-487.
Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttilä M, Contreras R. 2005. Cloning and characterization of the glucosidase Ⅱ alpha subunit gene of Trichoderma reesei:a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl.Environ. Microbiol., 71(6):2 910-2 924.
Giffard R G, Weeds A G, Spudich J A. 1984. Ca2+-dependent binding of severin to actin:a one-to-one complex is formed. J. Cell Biol., 98(5):1 796-1 803.
Goldberg E D, Koide M, Hodge V, Flegal A R, Martin J. 1983. U. S. mussel watch:1977-1978 results on trace metals and radionuclides. Est. Coast. Shelf Sci., 16(1):69-93.
Hartmann H, Noegel A A, Eckerskorn C, Rapp S, Schleicher M. 1989. Ca2+-independent F-actin capping proteins. Cap 32/34, a capping protein from Dictyostelium discoideum, does not share sequence homologies with known actinbinding proteins. J. Biol. Chem., 264(21):12 639-12 647.
Hines A, Oladiran G S, Bignell J P, Stentiford G D, Viant M R. 2007. Direct sampling of organisms from the field and knowledge of their phenotype:key recommendations for environmental metabolomics. Environ. Sci. Technol., 41(9):3 375-3 381.
Ji C L, Wang Q, Wu H F, Tan Q G, Wang W X. 2016. A metabolomic study on the biological effects of metal pollutions in oysters Crassostrea sikamea. Mar. Pollut.Bullet., 102(1):216-222.
Jiang W D, Liu Y, Hu K, Jiang J, Li S H, Feng L, Zhou X Q. 2014. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain:protective effects of myo-inositol. Aquat. Toxicol., 155:301-333.
Katayama H, Nagasu T, Oda Y. 2001. Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 15(16):1 416-1 421.
Kim S H, Jung M Y, Lee Y M. 2011. Effect of heavy metals on the antioxidant enzymes in the marine ciliate Euplotes crassus. Toxicol. Environ. Health Sci., 3(4):213-219.
Knigge T, Monsinjon T. Andersen O K. 2004. Surfaceenhanced laser desorption/ionization-time of flight-mass spectrometry approach to biomarker discovery in blue mussels (Mytilus edulis) exposed to polyaromatic hydrocarbons and heavy metals under field conditions.Proteomics, 4(9):2 722-2 727.
Krumschnabel G, Manzl C, Berger C, Hofer B. 2005. Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes. Toxicol. Appl.Pharmacol., 209(1):62-73.
Kurzik-Dumke U, Lohmann E. 1995. Sequence of the new Drosophila melanogaster small heat-shock-related gene, lethal(2) essential for life[l(2)efl], at locus 59F4,5. Gene, 154(2):171-175.
Lin C Q, Yu R L, Hu G R, Yang Q L, Wang X M. 2016. Contamination and isotopic composition of Pb and Sr in offshore surface sediments from Jiulong River, Southeast China. Environ. Pollut., 218:644-650.
Liu F J, Wang W-X. 2012. Proteome pattern in oysters as a diagnostic tool for metal pollution. J. Hazard. Mater., 239-240:241-248.
Luo L Z, Ke C H, Guo X Y, Shi B, Huang M Q. 2014. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to longterm heavy metal-contaminated estuary. Fish Shellfish Immunol., 38(2):318-329.
Magalhães G S, Lopes-Ferreira M, Junqueira-de-Azevedo I L M, Spencer P J, Araújo M S, Portaro F C V, Ma L, Valente R H, Juliano L, Fox J W, Ho P L, Moura-da-Silva A M. 2005. Natterins, a new class of proteins with kininogenase activity characterized from Thalassophryne nattereri fish venom. Biochimie, 87(8):687-699.
Monsinjon T, Knigge T. 2007. Proteomic applications in ecotoxicology. Proteomics, 7(16):2 997-3 009.
Muslin A J, Tanner J W, Allen P M, Shaw A S. 1996. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell, 84(6):889-897.
Puerto M, Campos A, Prieto A, Cameán A, de Almeida A M, Coelho A V, Vasconcelos V. 2011. Differential protein expression in two bivalve species; Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells. Aquat. Toxicol., 101(1):109-116.
Rank J, Lehtonen K K, Strand J, Laursen M. 2007. DNA damage, acetylcholinesterase activity and lysosomal stability in native and transplanted mussels (Mytilus edulis) in areas close to coastal chemical dumping sites in Denmark. Aquat. Toxicol., 84(1):50-61.
Sahoo S K, Kim T, Kang G B, Lee J G, Eom S H, Kim DH. 2009. Characterization of calumenin-SERCA2 interaction in mouse cardiac sarcoplasmic reticulum. J. Biol. Chem., 284(45):31 109-31 121.
Saito T, Yamasaki S. 2003. Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol. Rev., 192(1):143-160.
Shevchenko A, Wilm M, Vorm O, Mann M. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem., 68(5):850-858.
Stiburek L, Hansikova H, Tesarova M, Cerna L, Zeman J. 2006. Biogenesis of eukaryotic cytochrome c oxidase.Physiol. Res., 55(S2):S27-S41.
Tan Q G, Wang Y, Wang W X. 2015. Speciation of Cu and Zn in two colored oyster species determined by X-ray absorption spectroscopy. Environ. Sci. Technol., 49(11):6 919-6 925.
Taylor M A, Ross H A, McRae D, Stewart D, Roberts I, Duncan G, Wright F, Millam S, Davies H V. 2000. A potato α-glucosidase gene encodes a glycoproteinprocessing α-glucosidase Ⅱ-like activity. Demonstration of enzyme activity and effects of down-regulation in transgenic plants. Plant J., 24(3):305-316.
Tian L, Wang M H, Li X M, Lam P K S, Wang M F, Wang D Z, Chou H N, Li Y, Chan L L. 2011. Proteomic modification in gills and brains of medaka fish (Oryzias melastigma) after exposure to a sodium channel activator neurotoxin.brevetoxin-1. Aquat. Toxicol., 104(3-4):211-217.
Tomanek L. 2014. Proteomics to study adaptations in marine organisms to environmental stress. J. Proteomics, 105:92-106.
Vidal-Liñán L, Bellas J. 2013. Practical procedures for selected biomarkers in mussels, Mytilus galloprovincialis-implications for marine pollution monitoring. Sci. Total Environ., 461-462:56-64.
Wang J Y, Lan P, Gao H M, Zheng L, Li W F, Schmidt W. 2013. Expression changes of ribosomal proteins in phosphate-and iron-deficient Arabidopsis roots predict stress-specific alterations in ribosome composition. BMC Genomics, 14:783.
Weng N, Wang W X. 2014. Variations of trace metals in two estuarine environments with contrasting pollution histories. Sci. Total Environ., 485-486:604-614.
Wu H F, Ji C L, Wei L, Zhao J M. 2013a. Evaluation of protein extraction protocols for 2DE in marine ecotoxicoproteomics. Proteomics, 13(21):3 205-3 210.
Wu H F, Liu X L, Zhang X Y, Ji C L, Zhao J M, Yu J B. 2013b.Proteomic and metabolomic responses of clam Ruditapes philippinarum to arsenic exposure under different salinities. Aquat. Toxicol., 136-137:91-100.
Xu L L, Ji C L, Wu H F, Tan Q G, Wang W-X. 2016. A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis. Mar.Pollut. Bullet., 112(1-2):436-442.
Zhang G F, Fang X D, Guo X M, Li L, Luo R B, Xu F, Yang P C, Zhang L L, Wang X T, Qi H G, Xiong Z Q, Que H Y, Xie Y L, Holland P W H, Paps J, Zhu Y B, Wu F C, Chen Y X, Wang J F, Peng C F, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z Y, Zhu Q H, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y J, Domazet-Lošo T, Du Y S, Sun X Q, Zhang S D, Liu B H, Cheng P Z, Jiang X T, Li J, Fan D D, Wang W, Fu W J, Wang T, Wang B, Zhang J B, Peng Z Y, Li Y X, Li N, Wang J P, Chen M S, He Y, Tan F J, Song X R, Zheng Q M, Huang R L, Yang H L, Du X D, Chen L, Yang M, Gaffney P M, Wang S, Luo L H, She Z C, Ming Y, Huang W, Zhang S, Huang B Y, Zhang Y, Qu T, Ni P X, Miao G Y, Wang J Y, Wang Q, Steinberg C E, Wang H Y, Li N, Qian L M, Zhang G J, Li Y R, Yang H M, Liu X, Wang J, Yin Y, Wang J. 2012a. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490(7418):49-54.
Zhang L B, Gan J L, Ke C L, Liu X L, Zhao J M, You L P, Yu J B, Wu H F. 2012b. Identification and expression profile of a new cytochrome P450 isoform (CYP414A1) in the hepatopancreas of Venerupis (Ruditapes) philippinarum exposed to benzo[a]pyrene, cadmium and copper.Environ. Toxicol. Pharmacol., 33(1):85-91.
Zhang W, Wei Q. 2011. Calcineurin stimulates the expression of inflammatory factors in RAW 264.7 cells by interacting with proteasome subunit alpha type 6. Biochem. Biophys.Res. Commun., 407(4):668-673.
Copyright © Haiyang Xuebao