Cite this paper:
CORNISH M. Lynn, MOURITSEN Ole G., CRITCHLEY Alan T.. A mini-review on the microbial continuum: consideration of a link between judicious consumption of a varied diet of macroalgae and human health and nutrition[J]. HaiyangYuHuZhao, 2019, 37(3): 790-805

A mini-review on the microbial continuum: consideration of a link between judicious consumption of a varied diet of macroalgae and human health and nutrition

1 Acadian Seaplants Limited, James S. Craigie Research Center, Cornwallis B0S 1A0, N. S. Canada;
2 University of Copenhagen, Department of Food Science and Taste for Life, Design and Consumer Behavior, Nordic Food Lab, Rolighedsvej 26, Frederiksberg DK-1958, Denmark;
3 Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, Sydney, Nova Scotia B1P 6L2, Canada
As the primordial, prokaryotic inhabitants on Earth, microbial entities were responsible for significant influences on the pathways taken in the development of life as we know it. The manifestation of numerous pathologies in humans is considered to be intrinsically associated with microbial dysbiosis in the gut (i.e. a poorly balanced microbiota). Such adverse health conditions include obesity, chronic fatigue syndrome, cancer, cardiovascular issues, neurological disorders, colitis, irritable bowel syndrome (IBS), and rheumatoid arthritis. Endosymbiotic events at the single cell level took place billions of years ago, eventually leading to eukaryotes, photosynthesis, and multicellularity. Macroalgae (seaweeds) were amongst the first organisms to develop these characteristics. Microbes and macroalgae interacted in a pattern of co-evolution, a process that applies to most, if not all living organisms. It is recognized that the normal human microbiome consists of over a trillion microorganisms, including about 2 000 commensal bacterial species typically stationed in the gut. Many of these live in the colon, where they function in the digestion of foods, releasing bio-available nutrients, bioactive molecules, and various metabolites. They mediate communication signals between the gut and the brain, and promote the normal development of immune function, metabolic activities, behaviour, and neurological stability. As very early humans foraged for food, some would have benefitted from coastal diets, rich in seaweeds and associated microbes. Such diets would have consistently provided all the nutrients essential for survival and growth, and as such, could have conveyed competitive advantages and contributed to enhanced cognitive sophistication. This mini-review article highlights studies regarding the health benefits of dietary fibres and the production of short chain fatty acids (SCFA). Insights are offered regarding the positive effects the inclusion of macroalgae into the standard, Western diet can deliver in terms of providing appropriate fodder for those microbial populations deemed beneficial to human health and wellness.
Key words:    microbiota|macroalgae|fibre|short chain fatty acids (SCFA)|nutrition   
Received: 2018-04-18   Revised: 2018-08-08
PDF (255 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by CORNISH M. Lynn
Articles by MOURITSEN Ole G.
Articles by CRITCHLEY Alan T.
Alam M Z, Braun G, Norrie J, Hodges D M. 2013. Effect of Ascophyllum extract application on plant growth, fruit yield and soil microbial communities of strawberry. Can.J. Plant Sci., 93(1):23-36.
Alam M Z, Braun G, Norrie J, Hodges D M. 2014. Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Can. J. Plant Sci., 94(2):337-348.
Armstrong E, Yan L M, Boyd K G, Wright P C, Burgess J G. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 461(1-3):37-40.
Augustin R, Schröder K, Rincón A P M, Fraune S, AntonErxleben F, Herbst E M, Wittlieb J, Schwentner M, Grötzinger J, Wassenaar T M, Bosch T C G. 2017. A secreted antibacterial neuropeptide shapes the microbiome of Hydra. Nat. Commun., 8(1):698,
Bajury D M, Rawi M H, Sazali I H, Abdullah A, Sarbini S R. 2017. Prebiotic evaluation of red seaweed (Kappaphycus alvarezii) using in vitro colon model. Int. J. Food Sci.Nutr., 68(7):821-828,
Benedict C, Vogel H, Jonas W, Woting A, Blaut M, Schürmann A, Cedernaes J. 2016. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol.Metab., 5(12):1 175-1 186.
Blaser M J, Cardon Z G, Cho M K, Dangl J L, Donohue T J, Green J L, Knight R, Maxon M E, Northen T R, Pollard K S, Brodie E L. 2016. Toward a predictive understanding of Earth's microbiomes to address 21st century challenges.mBio, 7(3):e00714-16,
Blaser M J, Falkow S. 2009. What are the consequences of the disappearing human microbiota? Nat. Rev. Microbiol., 7(12):887-894.
Blaser M J. 2018. The past and future biology of the human microbiome in an age of extinctions. Cell, 172(6):1 173-1 177.
Blottière H M, Buecher B, Galmiche J P, Cherbut C. 2003.Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proc. Nutr. Soc., 62(1):101-106.
Bourassa M W, Alim I, Bultman S J, Ratan R R. 2016. Butyrate, neuroepigenetics and the gut microbiome:can a high fiber diet improve brain health? Neurosci. Let., 625:56-63.
Cani P D, Everard A. 2016. Talking microbes:when gut bacteria interact with diet and host organs. Mol. Nutr.Food Res., 60(1):58-66.
Cantarel B L, Lombard V, Henrissat B. 2012. Complex carbohydrate utilization by the healthy human microbiome. PLoS One, 7(6):e28742.
Chen L G, Xu W, Chen D, Chen G J, Liu J W, Zeng X X, Shao R, Zhu H J. 2018. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. Int. J. Biol.Macromol., 112:1 055-1 061.
Chow J, Lee S M, Shen Y, Khosravi A, Mazmanian S K. 2010.Host-bacterial symbiosis in health and disease. Adv.Immunol., 107:243-274.
Cian R E, Drago S R, de Medina F S, Martínez-Augustin O. 2015. Proteins and carbohydrates from red seaweeds:evidence for beneficial effects on gut function and microbiota. Mar. Drugs, 13(8):5 358-5 383.
Clemente J C, Ursell L K, Parfrey L W, Knight R. 2012. The impact of the gut microbiota on human health:an integrative view. Cell, 148(6):1 258-1 270.
Cock J M, Sterck L, Rouzé P, Scornet D, Allen A E, Amoutzias G, Anthouard V, Artiguenave F, Aury J M, Badger J H, Beszteri B, Billiau K, Bonnet E, Bothwell J H, Bowler C, Boyen C, Brownlee C, Carrano C J, Charrier B, Cho G Y, Coelho S M, Collén J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami S M, Doulbeau S, Elias M, Farnham G, Gachon C M, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper F C, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez P J, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli C A, Nelson D R, Nyvall-Collén P, Peters A F, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing S A, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder D C, Ségurens B, Strittmatter M, Tonon T, Tregear J W, Valentin K, Von Dassow P, Yamagishi T, Van De Peer Y, Wincker P. 2010.The Ectocarpus genome and the independent evolution of multicellularity in brown algae.Nature, 465(7298):617-621.
Cockburn D W, Koropatkin N M. 2016. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J. Mol. Biol., 428(16):3 230-3 252.
Collén J, Porcel B, Carré W, Ball S G, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, Elias M, Artiguenave F, Arun A, Aury J M, Barbosa-Neto J F, Bothwell J H, Bouget F Y, Brillet L, Cabello-Hurtado F, Capella-Gutiérrez S, Charrier B, Cladière L, Cock J M, Coelho S M, Colleoni C, Czjzek M, Da Silva C, Delage L, Denoeud F, Deschamps P, Dittami S M, Gabaldón T, Gachon C M, Groisillier A, Hervé C, Jabbari K, Katinka M, Kloareg B, Kowalczyk N, Labadie K, Leblanc C, Lopez P J, McLachlan D H, Meslet-Cladiere L, Moustafa A, Nehr Z, Nyvall Collén P, Panaud O, Partensky F, Poulain J, Rensing S A, Rousvoal S, Samson G, Symeonidi A, Weissenbach J, Zambounis A, Wincker P, Boyen C. 2013. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc. Natl. Acad. Sci. U. S. A., 110(13):5 247-5 252.
Cornish M L, Critchley A T, Mouritsen O G. 2017. Consumption of seaweeds and the human brain. J. Appl. Phycol., 29(5):2 377-2 398.
Cox S, Turley G H, Rajauria G, Abu-Ghannam N, Jaiswal A K. 2014. Antioxidant potential and antimicrobial efficacy of seaweed (Himanthalia elongata) extract in model food systems. J. Appl. Phycol., 26(4):1 823-1 831.
Croft M T, Lawrence A D, Raux-Deery E, Warren M J, Smith A G. 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438(7064):90-93.
Croft M T, Warren M J, Smith A G. 2006. Algae need their vitamins. Eukaryot Cell, 5(8):1 175-1 183.
Crowley E K, Long-Smith C M, Murphy A, Patterson E, Murphy K, O'Gorman D M, Stanton C, Nolan Y M. 2018.Dietary supplementation with a magnesium-rich marine mineral blend enhances the diversity of gastrointestinal microbiota. Mar. Drugs, 16(6):216,
Cryan J F, Dinan T G. 2012. Mind-altering microorganisms:the impact of the gut microbiota on brain and behaviour.Nat. Rev. Neurosci., 13(10):701-712.
Cunnane S C, Crawford M A. 2014. Energetic and nutritional constraints on infant brain development:implications for brain expansion during human evolution. J. Human Evol., 77:88-98.
Das A, Srinivasan M, Ghosh T S, Mande S S. 2016. Xenobiotic metabolism and gut microbiomes. PLoS One, 11(10):e0163099.
Davenport E R, Sanders J G, Song S J, Amato K R, Clark A G, Knight R. 2017. The human microbiome in evolution.BMC Biol., 15:127,
De Clerck O, Bogaert K A, Leliaert F. 2012. Diversity and evolution of algae:primary endosymbiosis. Adv. Bot.Res., 64:56-86.
De Jesus Raposo M F, De Morais A M M B, De Morais R M S C. 2016. Emergent sources of prebiotics:seaweeds and microalgae. Mar. Drugs, 14(2):27.
Den Besten G, Van Eunen K, Groen A K, Venema K, Reijngoud D J, Bakker B M. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 54(9):2 325-2 340.
Devillé C, Gharbi M, Dandrifosse G, Peulen O. 2007. Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J. Sci. Food Agric., 87(9):1 717-1 725.
Dillehay T D, Ramírez C, Pino M, Collins M B, Rossen J, Pino-Navarro J D. 2008. Monte Verde:seaweed, food, medicine, and the peopling of South America. Science, 320(5877):784-786.
Donia M S, Cimermancic P, Schulze C J, Brown L C W, Martin J, Mitreva M, Clardy J, Linington R G, Fischbach M A. 2014. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell, 158(6):1 402-1 414.
Duncan S H, Lobley G E, Holtrop G, Ince J, Johnstone A M, Louis P, Flint H J. 2008. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes., 32(11):1 720-1 724.
El Kaoutari A, Armougom F, Gordon J I, Raoult D, Henrissat B. 2013. The abundance and variety of carbohydrateactive enzymes in the human gut microbiota. Nat. Rev.Microbiol., 11(7):497-504.
Elson C O. 2000. Commensal bacteria as targets in Crohn's disease. Gastroenterology, 119(1):254-257.
Erny D, Hrabě De Angelis A L, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermöhlen O, Chun E, Garrett W S, McCoy K D, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci., 18(7):965-977.
Farzi A, Fröhlich E E, Holzer P. 2018. Gut microbiota and the neuroendocrine system. Neurotherapeutics, 15(1):5-22.
Flórez L V, Biedermann P H W, Engl T, Kaltenpoth M. 2015.Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep., 32(7):904-936.
Garbary D J, London J F. 1995. The Ascophylluml Polysiphonial Mycosphaerella symbiosis V. Fungal infection protects A.nosodum from desiccation. Bot. Mar., 38(1-6):529-533.
Gibson G R, Hutkins R, Sanders M E, Prescott S L, Reimer R A, Salminen S J, Scott K, Stanton C, Swanson K S, Cani P D, Verbeke K, Reid G. 2017. Expert consensus document:the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev.Gastroenterol. Hepatol., 14(8):491-502.
Gibson G R, Scott K P, Rastall R A, Tuohy K M, Hotchkiss A, Dubert-Ferrandon A, Gareau M G, Murphy E F, Saulnier D M, Loh G, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir-Wijnkoop I, Walker C, Buddington R K. 2010.Dietary prebiotics:current status and new definition. Food Sci. Technol. Bull.:Funct.Foods, 7(1):1-19.
Gibson G, Dworkin I. 2004. Uncovering cryptic genetic variation. Nat. Rev. Genet., 5(9):681-690.
Global Burden of Disease Collaborators. 2017. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016:a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390(10100):1 211-1 259,
Goecke F, Labes A, Wiese J, Imhoff J F. 2010.Chemical interactions between marine macroalgae and bacteria.Mar. Ecol. Prog. Ser., 409:267-300.
Goraya J S, Kaur S, Mehra B. 2015. Neurology of nutritional vitamin B12 deficiency in infants:case series from India and literature review. J. Child. Neurol., 30(13):1 831-1 837.
Haygood R, Fedrigo O, Hanson B, Yokoyama K D, Wray G A. 2007. Promoter regions of many neural- and nutritionrelated genes have experienced positive selection during human evolution. Nat. Genet., 39(9):1 140-1 144.
Hehemann J H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010.Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 464(7290):908-912.
Hehemann J H, Kelly A G, Pudlo N A, Martens E C, Boraston A B. 2012. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl.Acad. Sci. U. S. A., 109(48):19 786-19 791.
Helliwell K E, Collins S, Kazamia E, Purton S, Wheeler G L, Smith A. 2015. Fundamental shift in vitamin B12 ecophysiology of a model alga demonstrated by experimental evolution. ISME J., 9(6):1 446-1 455.
Holdt S L, Kraan S. 2011. Bioactive compounds in seaweed:functional food applications and legislation. J. Appl.Phycol., 23(3):543-597.
Holloway R L, Sherwood C C, Hof P R, Rilling J K. 2009.Evolution of the brain in humans-paleoneurology. In:Binder M D, Hirokawa N, Windhorst U eds. Encyclopedia of Neuroscience. Springer-Verlag, Berlin. p.1 326-1 334.
Hoyles L, Snelling T, Umlai U K, Nicholson J K, Carding S R, Glen R C, McArthur S. 2018. Microbiome-host systems interactions:protective effects of propionate upon the blood-brain barrier. Microbiome, 6:55,
Hutkins R W, Krumbeck J A, Bindels L B, Cani P D, Fahey G Jr, Goh Y J, Hamaker B, Martens E C, Mills D A, Rastal R A, Vaughan E, Sanders M E. 2016. Prebiotics:why definitions matter. Curr. Opin. Biotechnol., 37:1-7.
Ikeda S, Okubo T, Anda M, Nakashita H, Yasuda M, Sato S, Kaneko T, Tabata S, Eda S, Momiyama A, Terasawa K, Mitsui H, Minamisawa K. 2010.Community- and genome-based views of plant-associated bacteria:plantbacterial interactions in soybean and rice. Plant Cell Physiol., 51(9):1 398-1 410.
Jiménez-Escrig A, Gómez-Ordóñez E, Tenorio M D, Rupérez P. 2013. Antioxidant and prebiotic effects of dietary fiber co-travelers from sugar Kombu in healthy rats. J. Appl.Phycol., 25(2):503-512.
Jocken J W E, González Hernández M A, Hoebers N T H, Van Der Beek C M, Essers Y P G, Blaak E E, Canfora E E. 2018. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model.Front. Endocrinol., 8:372, 2017.00372.
Jutur P P, Nesamma A A, Shaikh M R. 2016. Algae-derived marine oligosaccharides and their biological applications.Front. Mar. Sci., 3(39):83.
Kadam S U, O'Donnell C P, Rai D K, Hossain M B, Burgess C M, Walsh D, Tiwari B K. 2015. Laminarin from Irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea:ultrasound assisted extraction, characterization and bioactivity. Mar. Drugs, 13(7):4 270-4 280.
Kausalya M, Narasimha Rao G M. 2015. Antimicrobial activity of marine algae. J. Algal Biomass Utln., 6(1):78-87.
Kazamia E, Czesnick H, Van Nguyen T T, Croft M T, Sherwood E, Sasso S, Hodson S J, Warren M J, Smith A G. 2012.
Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation.Environ. Microbiol., 14(6):1 466-1 476.
Kearney S M, Gibbons S M, Erdman S E, Alm E J. 2018.Orthogonal dietary niche enables reversible engraftment of a gut bacterial commensal. BioRxiv,
Kim J Y, Kwon Y M, Kim I S, Kim J A, Yu D Y, Adhikari B, Lee S S, Choi I S, Cho K K. 2018. Effects of the brown seaweed Laminaria japonica supplementation on serum concentrations of IgG, triglycerides, and cholesterol, and intestinal microbiota composition in rats. Front. Nutr., 5:23,
Kim J Y, Yu D Y, Kim J A, Choi E Y, Lee C Y, Hong Y H, Kim C W, Lee S S, Choi I S, Cho K K. 2016. Effects of Undaria pinnatifida and Laminaria japonica on rat's intestinal microbiota and metabolite. J. Nutr. Food Sci., 6(3):502,
Knoll A H. 2011. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci., 39:217-239.
Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee Y S, De Vadder F, Arora T, Hallen A, Martens E, Björck I, Bäckhed F. 2015. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab., 22(6):971-982.
Kulshreshtha G, Rathgeber B, Stratton G, Thomas N, Evans F, Critchley A, Hafting J, Prithiviraj B. 2014. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult. Sci., 93(12):2 991-3 001,
Kyriacou K, Parkington J E, Marais A D, Braun D R. 2014.Nutrition, modernity and the archaeological record:coastal resources and nutrition among Middle Stone Age hunter-gatherers on the Western Cape coast of South Africa. J. Human Evol., 77:64-73.
Lahaye M. 1991. Marine algae as sources of fibres:determination of soluble and insoluble dietary fibre contents in some 'sea vegetables'. J. Sci. Food Agric., 54(4):587-594.
Le Chatelier E, Nielsen T, Qin J J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto J M, Kennedy S, Leonard P, Li J H, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen H B, Juncker A S, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal E G, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, SicheritzPonten T, De Vos W M, Zucker J D, Raes J, Hansen T, MetaHIT Consortium, Bork P, Wang J, Ehrlich S D, Pedersen O. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature, 500(7464):541-546.
Leliaert F, Tronholm A, Lemieux C, Turmel M, DePriest M S, Bhattacharya D, Karol K G, Fredericq S, Zechman F W, Lopez-Bautista J M. 2016. Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Sci. Rep., 6:25 367,
Ley R E, Bäckhed F, Turnbaugh P J, Lozupone C A, Knight R D, Gordon J I. 2005. Obesity alters gut microbial ecology.Proc. Natl. Acad. Sci. U. S. A., 102(31):11 070-11 075.
Ley R E, Hamady M, Lozupone C, Turnbaugh P J, Ramey R R, Bircher J S, Schlegel M L, Tucker T A, Schrenzel M D, Knight R, Gordon J I. 2008. Evolution of mammals and their gut microbes. Science, 320(5883):1 647-1 651.
Ley R E, Turnbaugh P J, Klein S, Gordon J I. 2006. Microbial ecology:Human gut microbes associated with obesity.Nature, 444(7122):1 022-1 023.
Liu J H, Kandasamy S, Zhang J Z, Kirby C W, Karakach T, Hafting J, Critchley A T, Evans F, Prithiviraj B. 2015.Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligosaccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complement. Altern. Med., 15:279,
Lloyd-Price J, Abu-Ali G, Huttenhower C. 2016. The healthy human microbiome. Genome Med., 8(1):51,
Long S R. 2001. Genes and signals in the Rhizobium-legume symbiosis. Plant Physiol., 125(1):69-72.
MacFabe D. 2013. Autism:metabolism, mitochondria, and the microbiome. Global Adv. Health Med., 2(6):52-66.
Margulis L. 1974. Origin and evolution of the eukaryotic cell.Taxono, 23(2-3):225-226.
Margulis L. 1993. Symbiosis in Cell Evolution:Microbial Communities in the Archean and Proterozoic Eons. 2nd edn. Freeman, New York. 448p.
Marshall K, Joint I, Callow M E, Callow J A. 2006. Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microbial Ecol., 52(2):302-310.
Martens E C, Kelly A G, Tauzin A S, Brumer H. 2014. The devil lies in the details:how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. J Mol. Biol., 426(23):3 851-3 865.
Mazmanian S K, Liu C H, Tzianabos A O, Kasper D L. 2005.An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1):107-118.
Mazmanian S K, Round J L, Kasper D L. 2008. A microbial symbiosis factor prevents intestinal inflammatory disease.Nature, 453(7195):620-625.
Miranda L N, Hutchison K, Grossman A R, Brawley S H. 2013. Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis:did bacterial farmers produce macroalgae? PLoS One, 8(3):e58269.
Moeller A H, Caro-Quintero A, Mjungu D, Georgiev A V, Lonsdorf E V, Muller M N, Pusey A E, Peeters M, Hahn B H, Ochman H. 2016. Cospeciation of gut microbiota with hominids. Science, 353(6297):380-382,
Moos W H, Faller D V, Harpp D N, Kanara I, Pernokas J, Powers W R, Steliou K. 2016. Microbiota and neurological disorders:a gut feeling. BioRes. Open Access, 5(1):137-145.
Mouritsen O G. 2013. Seaweeds:Edible, Available &Sustainable. University of Chicago Press, Chicago.
Moya-Pérez A, Luczynski P, Renes I B, Wang S G, Borre Y, Ryan C A, Knol J, Stanton C, Dinan T G, Cryan J F. 2017.
Intervention strategies for cesarean section-induced alterations in the microbiota-gut-brain axis. Nutr. Rev., 75(4):225-240.
Muegge B D. 2013. The Influence of Diet on the Mammalian Gut Microbiome. Washington University, St. Louis, Missouri.
Nanjundappa R H, Ronchi F, Wang J G, Clemente-Casares X, Yamanouchi J, Umeshappa C S, Yang Y, Blanco J, Bassolas-Molina H, Salas A, Khan H, Slattery R M, Wyss M, Mooser C, Macpherson A J, Sycuro L K, Serra P, McKay D M, McCoy K D, Santamaria P. 2017. A gut microbial mimic that hijacks diabetogenic autoreactivity to suppress colitis. Cell, 171(3):655-667.e17.
Nowack E C M, Weber A P M. 2018. Genomics-informed insights into endosymbiotic organelle evolution in photosynthetic eukaryotes. Annu. Rev. Plant Biol., 69:51-84,
O'Doherty J V, Dillon S, Figat S, Callan J J, Sweeney T. 2010.The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs. Anim. Feed Sci. Technol., 157(3-4):173-180.
O'Hara A M, Shanahan F. 2006. The gut flora as a forgotten organ. EMBO Rep., 7(7):688-693.
Okolie C L, Rajendran S R C K, Udenigwe C C, Aryee A N A, Mason B. 2017. Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. J. Food Biochem., 41(5):e12392,
Oriach C S, Robertson R C, Stanton C, Cryan J F, Dinan T G. 2016. Food for thought:the role of nutrition in the microbiota-gut-brain axis. Clin. Nutr. Exp., 6:25-38.
Pérez M J, Falqué E, Domínguez H. 2016. Antimicrobial action of compounds from marine seaweed. Mar. Drugs, 14(3):52,
Perry R J, Peng L, Barry N A, Cline G W, Zhang D Y, Cardone R L, Petersen K F, Kibbey R G, Goodman A L, Shulman G I. 2016. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 534(7606):213-217.
Popper Z A, Michel G, Hervé C, Domozych D S, Willats W G T, Tuohy M G, Kloareg B, Stengel D B. 2011. Evolution and diversity of plant cell walls:from algae to flowering plants. Annu. Rev. Plant Biol., 62:567-590.
Provasoli L, Pintner I J. 1980. Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca(Chlorophyceae). J. Phycol., 16(2):196-200.
Qin J J, Li R Q, Raes J, Arumugam M, Burgdorf K S, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J H, Xu J M, Li S C, Li D F, Cao J J, Wang B, Liang H Q, Zheng H S, Xie Y L, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H M, Yu C, Li S T, Jian M, Zhou Y, Li Y R, Zhang X Q, Li S G, Qin N, Yang H M, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich S D, Wang J. 2010.A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285):59-65,
Rauma A L, Törrönen R, Hänninen O, Mykkänen H. 1995.Vitamin B-12 status of long-term adherents of a strict uncooked vegan diet ("living food diet") is compromised.J. Nutr., 125(10):2 511-2 515.
Rebuffet E, Groisillier A, Thompson A, Jeudy A, Barbeyron T, Czjzek M, Michel G. 2011. Discovery and structural characterization of a novel glycosidase family of marine origin. Environ. Microbiol., 13(5):1 253-1 270.
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De Los Reyes-Gavilán C G, Salazar N. 2016. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol., 7:185,
Riscuta G, Xi D, Pierre-Victor D, Starke-Reed P, Khalsa J, Duffy L. 2018. Diet, microbiome, and epigenetics in the era of precision medicine. In:Dumitrescu R G, Verma M eds. Cancer Epigenetics for Precision Medicine. Humana Press, New York, NY. p.141-156.
Roszyk E, Puszczewicz M. 2017. Role of human microbiome and selected bacterial infections in the pathogenesis of rheumatoid arthritis. Reumatologia, 55(5):242-250.
Roumeliotis N, Dix D, Lipson A. 2012. Vitamin B12 deficiency in infants secondary to maternal causes. CMAJ, 184(14):1 593-1 598.
Round J L, Mazmanian S K. 2009. The gut microbiota shapes intestinal immune responses during health and disease.Nat. Rev. Immunol., 9(5):313-323.
Salvia-Trujillo L, Sun Q, Um B H, Park Y, McClements D J. 2015. In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems:impact of lipid carrier type. J. Func. Foods, 17:293-304.
Sawicki C M, Livingston K A, Obin M, Roberts S B, Chung M, McKeown N M. 2017. Dietary fiber and the human gut microbiota:application of evidence mapping methodology. Nutrients, 9(2):125,
Schoenemann P T. 2006. Evolution of the size and functional areas of the human brain. Annu. Rev. Anthropol., 35:379-406.
Seetharam B, Alpers D H. 1982. Absorption and transport of cobalamin (vitamin B12). Annu. Rev. Nutr., 2:343-369.
Siavoshian S, Segain J P, Kornprobst M, Bonnet C, Cherbut C, Galmiche J P, Blottière H M. 2000. Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells:induction of cyclin D3 and p21 expression. Gut, 46(4):507-514.
Singh R P, Bijo A J, Baghel R S, Reddy C R K, Jha B. 2011.Role of bacterial isolates in enhancing the bud induction in the industrially important red alga Gracilaria dura.FEMS Microbiol. Ecol., 76(2):381-392.
Singh R P, Reddy C R K. 2014. Seaweed-microbial interactions:key functions of seaweed-associated bacteria. FEMS Microbiol. Ecol., 88(2):213-230.
Sonnenburg E D, Smits S A, Tikhonov M, Higginbottom S K, Wingreen N S, Sonnenburg J L. 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529(7585):212-215.
Sonnenburg J L. 2010.Genetic pot luck. Nature, 464(7920):837-838.
Stengel D B, Connan S, Popper Z A. 2011. Algal chemodiversity and bioactivity:sources of natural variability and implications for commercial application. Biotechnol.Adv., 29(5):483-501.
Stevens C E, Hume I D. 1998. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev., 78(2):393-427.
Tattersall I. 2014. Diet as driver and constraint in human evolution. J. Human Evol., 77:141-142.
The Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome.Nature, 486(7402):207-214.
Thiba A, Umar C A, Myende S, Nweke E, Rumbold K, Candy G. 2017. Differences in microbiome in rat models of cardiovascular disease. S. Afr. J. Surg., 55(2):71.
Thomas F, Hehemann J H, Rebuffet E, Czjzek M, Michel G. 2011. Environmental and gut Bacteroidetes:the food connection. Front. Microbiol., 2:93,
Tramontano M, Andrejev S, Pruteanu M, Klünemann M, Kuhn M, Galardini M, Jouhten P, Zelezniak A, Zeller G, Bork P, Typas A, Patil K R. 2018. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies.Nat. Microbiol., 3(4):514-522.
Verhaegen M, Munro S. 2011. Pachyosteosclerosis suggests archaic Homo frequently collected sessile littoral foods.HOMO, 62(4):237-247.
Vital M, Karch A, Pieper D H. 2017. Colonic butyrateproducing communities in humans:an overview using omics data. mSystems, 2(6):e00130-17,
Von Schenck U, Bender-Götze C, Koletzko B. 1997.Persistence of neurological damage induced by dietary vitamin B-12 deficiency in infancy. Arch. Dis. Child., 77(2):137-139.
Wang M P, Chen L, Li YT, Chen L, Liu Z Y, Wang X J, Yan P S, Qin S. 2018a. Responses of soil microbial communities to a short-term application of seaweed fertilizer revealed by deep amplicon sequencing. Appl. Soil Ecol., 125:288-296,
Wang S G, Harvey L, Martin R, Van Der Beek E M, Knol J, Cryan J, Renes I B. 2018b. Targeting the gut microbiota to influence brain development and function in early life.Neurosci. Biobehav. Rev., 95:191-201,
Wanyonyi S, Du Preez R, Brown L, Paul N A, Panchal S K. 2017. Kappaphycus alvarezii as a food supplement prevents diet-induced metabolic syndrome in rats.Nutrients, 9(11):1 261.
Watanabe F, Yabuta Y, Bito T, Teng F. 2014. Vitamin B12-containing plant food sources for vegetarians. Nutrients, 6(5):1 861-1 873.
Wells M L, Potin P, Craigie J S, Raven J A, Merchant S S, Helliwell K E, Smith A G, Camire M E, Brawley S H. 2017. Algae as nutritional and functional food sources:revisiting our understanding. J. Appl. Phycol., 29(2):949-982.
West C E, Jenmalm M C, Prescott S L. 2015. The gut microbiota and its role in the development of allergic disease:a wider perspective. Clin. Exp. Allergy, 45(1):43-53.
WHO (World Health Organization). 2018. World Health Statistics 2018:Monitoring Health for the SDGs, Sustainable Development Goals.
Williams A G, Withers S, Sutherland A D. 2013. The potential of bacteria isolated from ruminal contents of seaweedeating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro. Microb. Biotechnol., 6(1):45-52,
Woznica A, Gerdt J P, Hulett R E, Clardy J, King N. 2017.Mating in the closest living relatives of animals is induced by a bacterial chondroitinase. Cell, 170(6):1 175-1 183.e11.
Wu G D, Chen J, Hoffman C, Bittinger K, Chen Y Y, Keilbaugh S A, Bewtra M, Knights D, Walters W A, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H Z, Bushman F D, Lewis J D. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science, 334(6052):105-108.
Xiong Y Q, Yang R, Sun X X, Yang H T, Chen H M. 2017.Effect of the epiphytic bacterium Bacillus sp. WPySW2 on the metabolism of Pyropia haitanensis. J. Appl.Phycol., 30(2):1 225-1 237,
You X M, Einson J E, Lopez-Pena C L, Song M Y, Xiao H, McClements D J, Sela D A. 2017. Food-grade cationic antimicrobial ε-polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice. NPJ Sci. Food, 1:8.
Zhang Z S, Wang X M, Han S W, Liu C D, Liu F. 2018. Effect of two seaweed polysaccharides on intestinal microbiota in mice evaluated by illumina PE250 sequencing. Int. J.Biol. Macromol., 112:796-802.
Zhou M, Hunerberg M, Chen Y H, Reuter T, McAllister T A, Evans F, Critchley A T, Guan L L. 2018. Air-dried brown seaweed, Ascophyllum nodosum, alters the rumen microbiome in a manner that changes rumen fermentation profiles and lowers the prevalence of foodborne pathogens.mSphere, 3(1):e00017-18.
Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants:the hologenome theory of evolution. FEMS Microbiol. Rev., 32(5):723-735.