Cite this paper:
KAWEE-AI Arthitaya, KIM Aaron Taehwan, KIM Sang Moo. Inhibitory activities of microalgal fucoxanthin against α-amylase, α-glucosidase, and glucose oxidase in 3T3-L1 cells linked to type 2 diabetes[J]. HaiyangYuHuZhao, 2019, 37(3): 928-937

Inhibitory activities of microalgal fucoxanthin against α-amylase, α-glucosidase, and glucose oxidase in 3T3-L1 cells linked to type 2 diabetes

KAWEE-AI Arthitaya1,2, KIM Aaron Taehwan3, KIM Sang Moo1
1 Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
2 Department of Biotechnology, Chiang Mai University, Chiang Mai 50200, Thailand;
3 Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
Postprandial hyperglycemia is an early indication of type 2 diabetes and the target of many anti-diabetic and anti-obesity studies. α-Glucosidase and α-amylase are the crucial factors in regulating starch digestion and glucose absorption, making them key targets for many studies to treat postprandial hyperglycemia. We studied the inhibitory activities of microalgal fucoxanthin against rat-intestinal α-glucosidase and pancreatic α-amylase along with the antidiabetic effect to induce differentiation in 3T3-L1 pre-adipocytes using Oil Red-O staining. Fucoxanthin displayed strong hindrance activities toward α-amylase in a concentration-dependent manner, with an IC50 value of 0.68 mmol/L, whereas weak inhibitory activity against α-glucosidase, with an IC50 value of 4.75 mmol/L. Fucoxanthin also considerably elevated glucose oxidase activity in 3T3-L1 cells by 31.3% at 5 μmol/L. During adipocyte differentiation, fucoxanthin showed lipid accumulation in 3T3-L1 cells with no cytotoxicity up to 20 μmol/L. However, fucoxanthin had no inhibitory activity on glucose-6-phosphate dehydrogenase. These results suggest that fucoxanthin might be useful for the prevention of obesity or diabetes by inhibiting carbohydrate-hydrolyzing enzymes and lipid accumulation and be utilized as an ingredient for a functional food or dietary supplement.
Key words:    α-glucosidase|amylase|diabetes|fucoxanthin|glucose oxidase|microalgae   
Received: 2018-05-06   Revised: 2018-06-14
PDF (763 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by KAWEE-AI Arthitaya
Articles by KIM Aaron Taehwan
Articles by KIM Sang Moo
Baron A D. 1998. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Res. Clin. Pract., 40(S1):S51-S55.
Bernfeld P.1955. Amylases, alpha and beta. In:Colowick S P, Kaplan N O eds. Methods in Enzymology. Academic Press, New York. p.149-158.
Chang Y H, Chen Y L, Huang W C, Liou C J. 2018. Fucoxanthin attenuates fatty acid-induced lipid accumulation in FL83B hepatocytes through regulated Sirt1/AMPK signaling pathway. Biochem. Biophys. Res. Commun., 495(1):197-203.
Chethan S, Sreerama Y N, Malleshi N G. 2008. Mode of inhibition of finger millet malt amylases by the millet phenolics. Food Chem., 111(1):187-191.
Dixon M. 1953. The determination of enzyme inhibitor constants. Biochem. J., 55(1):170-171.
García López P M, de la Mora P G, Wysocka W, Maiztegui B, Alzugaray M E, Del Zotto H, Borelli M I. 2004.Quinolizidine alkaloids isolated from Lupinus species enhance insulin secretion. Eur. J. Pharmacol., 504(1-2):139-142.
Giugliano D, Ceriello A, Paolisso G. 1996. Oxidative stress and diabetic vascular complications. Diabetes Care, 19(3):257-267.
Gumucio D L, Wiebauer K, Caldwell R M, Samuelson L C, Meisler M H. 1988. Concerted evolution of human amylase genes. Mol. Cell. Biol., 8(3):1 197-1 205.
Guyton A C, Hall J E. 2015. Insulin, glucagon, and diabetes mellitus. In:Hall J E. Textbook of Medical Physiology. 13th edn. Saunders, Philadelphia. p.961-978.
Haugan J A, Aakermann R, Liaaen-Jensen S. 1992. Isolation of fucoxanthin and peridinin. Meth. Enzymol. 213:231-245.
Heo S J, Hwang J Y, Choi J I, Han J S, Kim H J, Jeon Y J. 2009.Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 615(1-3):252-256.
Hii C S T, Howell S L. 1985. Effects of flavonoids on insulin secretion and 45Ca2+ handling in rat islets of Langerhans.J. Endocrinol., 107(1):1-8.
Horii S, Fukase H, Matsuo T, Kameda Y, Asano N, Matsui K. 1986. Synthesis and α-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents. J. Med. Chem., 29(6):1 038-1 046.
Jung H A, Islam N, Lee C M, Jeong H O, Chung H Y, Woo H C, Choi J S. 2012. Promising antidiabetic potential of fucoxanthin isolated from the edible brown algae Eisenia bicyclis and Undaria pinnatifida. Fish Sci., 78(6):1 321-1 329.
Kang S I, Ko H C, Shin H S, Kim H M, Hong Y S, Lee N H, Kim S J. 2011. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes. Biochem.Biophys. Res. Commun., 409(4):769-774.
Kawamura-Konishi Y, Watanabe N, Saito M, Nakajima N, Sakaki T, Katayama T, Enomoto T. 2012. Isolation of a new phlorotannin, a potent inhibitor of carbohydratehydrolyzing enzymes, from the brown alga Sargassum patens. J. Agric. Food Chem., 60(22):5 565-5 570.
Kawee-Ai A, Kim S M. 2014. Application of microalgal fucoxanthin for the reduction of colon cancer risk:inhibitory activity of fucoxanthin against β-glucuronidase and DLD-1 cancer cells. Nat. Prod. Commun., 9(7):921-924.
Kawee-Ai A, Kuntiya A, Kim S M. 2013. Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Nat. Prod.Commun., 8(10):1 381-1 386.
Kim K Y, Choi K S, Kurihara H, Kim S M. 2008. -Glucuronidase inhibitory activity of bromophenols purified from Grateloupia elliptica. Food Sci. Biotechnol., 17(5):1 110-1 114.
Kim S M, Kang S W, Kwon O N, Chung D, Pan C H. 2012.Fucoxanthin as a major carotenoid in Isochrysis aff.Galbana:characterization of extraction for commercial application. J. Korean Soc. Appl. Biol. Chem., 55(4):477-483.
King G L, Kunisaki M, Nishio Y, Inoguchi T, Shiba T, Xia P. 1996. Biochemical and molecular mechanisms in the development of diabetic vascular complications. Diabetes, 45(S3):S105-S108.
Kurihara H, Mitani T, Kawabata J, Takahashi K. 1999. Inhibitory potencies of bromophenols from Rhodomelaceae algae against α-glucosidase activity. Fish Sci., 65(2):300-303.
Lam S H, Chen J M, Kang C J, Chen C H, Lee S H. 2008.α-glucosidase inhibitors from the seeds of Syagrus romanzoffiana. Phytochemistry, 69(5):1 173-1 178.
Li B, Huang Y, Paskewitz S M. 2006. Hen egg white lysozyme as an inhibitor of mushroom tyrosinase. FEBS Lett., 580(7):1 877-1 882.
Li Y Y, Wu H S, Tang L, Feng C R, Yu J H, Li Y, Yang Y S, Yang B, He Q J. 2007. The potential insulin sensitizing and glucose lowering effects of a novel indole derivative in vitro and in vivo. Pharmacol. Res., 56(4):335-343.
Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 56(3):658-666.
Lo Piparo E, Scheib H, Frei N, Williamson G, Grigorov M, Chou C J. 2008. Flavonoids for controlling starch digestion:structural requirements for inhibiting human α-amylase. J. Med. Chem., 51(12):3 555-3 561.
Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. 2005. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem. Biophys.Res. Commun., 332(2):392-397.
Maeda H, Hosokawa M, Sashima T, Miyashita K. 2007.Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J. Agric.Food Chem., 55(19):7 701-7 706.
Maeda H, Hosokawa M, Sashima T, Murakami-Funayama K, Miyashita K. 2009. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol. Med. Rep., 2(6):897-902.
Maeda H, Hosokawa M, Sashima T, Takahashi N, Kawada T, Miyashita K. 2006. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. Int. J. Mol. Med., 18:147-152.
Maeda H, Kanno S, Kodate M, Hosokawa M, Miyashita K. 2015. Fucoxanthinol, metabolite of fucoxanthin, improves obesity-induced inflammation in adipocyte cells. Mar.Drugs, 13(8):4 799-4 813.
Marshall J J, Lauda C M. 1975. Purification and properties of phaseolamin, an inhibitor of alpha-amylase, from the kidney bean, Phaseolus vulgaris. J. Biol. Chem., 250(20):8 030-8 037.
Mikami D, Kurihara H, Kim S M, Takahashi K. 2013. Red algal bromophenols as glucose 6-phosphate dehydrogenase inhibitors. Mar. Drugs, 11(10):4 050-4 057.
Molinski T F, Dalisay D S, Lievens S L, Saludes J P. 2009.Drug development from marine natural products. Nat.Rev. Drug Discov., 8(1):69-85.
Mori K, Ooi T, Hiraoka M, Oka N, Hamada H, Tamura M, Kusumi T. 2004. Fucoxanthin and its metabolites in edible brown algae cultivated in deep seawater. Mar. Drugs, 2(2):63-72.
Okada Y, Ishimaru A, Suzuki R, Okuyama T. 2004. A new phloroglucinol derivative from the brown alga Eisenia bicyclis:potential for the effective treatment of diabetic complications. J. Nat. Prod., 67(1):103-105.
Olive C, Geroch M E, Levy H R. 1971. Glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Biol.Chem., 246:2 047-2 057.
Petrushkina M, Gusev E, Sorokin B, Zotko N, Mamaeva A, Filimonova A, Kulikovskiy M, Maltsev Y, Yampolsky I, Guglya E, Vinokurov V, Namsaraev Z, Kuzmin D. 2017.Fucoxanthin production by heterokont microalgae. Algal Res., 24:387-393.
Priya S, Kaur N, Gupta A K. 2010.Purification, characterization and inhibition studies of α-amylase of Rhyzopertha dominica. Pestic. Biochem. Physiol., 98(2):231-237.
Shin E S, Park J, Shin J M, Cho D, Cho S Y, Shin D W, Ham M, Kim J B, Lee T R. 2008. Catechin gallates are NADP+-competitive inhibitors of glucose-6-phosphate dehydrogenase and other enzymes that employ NADP+ as a coenzyme. Bioorg. Med. Chem., 16(7):3 580-3 586.
Shobana S, Sreerama Y N, Malleshi N G. 2009. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics:mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem., 115(4):1 268-1 273.
Tadera K, Minami Y, Takamatsu K, Matsuoka T. 2006.Inhibition of α-glucosidase and α-amylase by flavonoids.J. Nutr. Sci. Vitaminol., 52(2):149-153.
Terasaki M, Hirose A, Narayan B, Baba Y, Kawagoe C, Yasui H, Saga N, Hosokawa M, Miyashita K. 2009. Evaluation of recoverable functional lipid components of several brown seaweeds (Phaeophyta) from Japan with special reference to fucoxanthin and fucosterol contents. J.Phycol., 45(4):974-980.
Tewari N, Tiwari V K, Mishra R C, Tripathi R P, Srivastava A K, Ahmad R, Srivastava R, Srivastava B S. 2003.Synthesis and bioevaluation of glycosyl ureas asα-glucosidase inhibitors and their effect on mycobacterium.Bioorg. Med. Chem., 11(13):2 911-2 922.
Xia S, Wang K, Wan L L, Li A F, Hu Q, Zhang C W. 2013.Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita.Mar. Drugs, 11(7):2 667-2 681.
Yan X J, Chuda Y, Suzuki M, Nagata T. 1999. Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci., Biotechnol., Biochem., 63(3):605-607.