Cite this paper:
YANG Bing, HOU Yijun, LI Min. Response of the western North Pacific subtropical ocean to the slow-moving super typhoon Nanmadol[J]. Journal of Oceanology and Limnology, 2019, 37(3): 938-956

Response of the western North Pacific subtropical ocean to the slow-moving super typhoon Nanmadol

YANG Bing1,2,3,4, HOU Yijun1,2,3, LI Min4
1 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences, Qingdao 266071, China;
3 Laboratory for Ocean and Climate Dynamics, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
4 Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao 266001, China
Abstract:
Based on in-situ observation, satellite and reanalysis data, responses of the western North Pacific subtropical ocean (WNPSO) to the slow-moving category 5 super typhoon Nanmadol in 2011 are analyzed. The dynamical response is dominated by near-inertial currents and Ekman currents with maximum amplitude of 0.39 m/s and 0.15 m/s, respectively. The near-inertial currents concentrated around 100 m below the sea surface and had an e-folding timescale of 4 days. The near-inertial energy propagated both upward and downward, and the vertical phase speed and wavelength were estimated to be 5 m/h and 175 m, respectively. The frequency of the near-inertial currents was blue-shifted near the surface and redshifted in ocean interior which may relate to wave propagation and/or background vorticity. The resultant surface cooling reaches -4.35℃ and happens when translation speed of Nanmadol is smaller than 3.0 m/s. When Nanmadol reaches super typhoon intensity, the cooling is less than 3.0℃ suggesting that the typhoon translation speed plays important roles as well as typhoon intensity in surface cooling. Upwelling induced by the slow-moving typhoon wind leads to typhoon track confined cooling area and the right-hand bias of cooling is slight. The mixed layer cooling and thermocline warming are induced by wind-generated upwelling and vertical entrainment. Vertical entrainment also led to mixed layer salinity increase and thermocline salinity decrease, however, mixed layer salinity decrease occurs at certain stations as well. Our results suggest that typhoon translation speed is a vital factor responsible for the oceanic thermohaline and dynamical responses, and the small Mach number (slow typhoon translation speed) facilitate development of Ekman current and upwelling.
Key words:    oceanic response|western North Pacific subtropical ocean|South China Sea|typhoon Nanmadol   
Received: 2018-04-24   Revised: 2018-06-18
Tools
PDF (14225 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by YANG Bing
Articles by HOU Yijun
Articles by LI Min
References:
Alford M H, MacKinnon J A, Simmons H L, Nash J D. 2016.Near-inertial internal gravity waves in the ocean. Annu.Rev. Mar. Sci., 8:95-123.
Alford M H. 2001a. Fine-structure contamination:observations and a model of a simple two-wave case. J. Phys.Oceanogr., 31(9):2 654-2 649.
Alford M H. 2001b. Internal swell generation:the spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31(8):2 359-2 368.
Amante C, Eakins B W. 2009. ETOPO1 1 Arc-Minute Global Relief Model:Procedures, Data Sources and Analysis.NOAA Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, NOAA, Boulder, Colorado.
Bell M M, Montgomery M T. 2008. Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136(6):2 023-2 046.
Chen G X, Xue H J, Wang D X, Xie Q. 2013. Observed nearinertial kinetic energy in the northwestern South China Sea. J. Geophys. Res. Oceans, 118(10):4 965-4 977.
Chen X Y, Pan D L, He X Q, Bai Y, Wang D F. 2012. Upper ocean responses to category 5 typhoon Megi in the western north Pacific. Acta Oceanol. Sin., 31(1):51-58.
Chiang T L, Wu C R, Oey L Y. 2011. Typhoon Kai-Tak:an ocean's perfect storm. J. Phys. Oceanogr., 42(1):221-233.
D'Asaro E A, Sanford T B, Niiler P P, Terrill E J. 2007. Cold wake of Hurricane Frances. Geophys. Res. Lett., 34(15):L15609.
D'Asaro E A. 1985. The energy flux from the wind to nearinertial motions in the surface mixed layer. J. Phys.Oceanogr., 15(8):1 043-1 059.
D'Asaro E A. 2003. The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33(3):561-579.
D'Asaro E, Black P, Centurioni L, Harr P, Jayne S, Lin I I, Lee C, Morzel J, Mrvaljevic R, Niiler P P, Rainville L, Stanford T, Tang T Y. 2011. Typhoon-ocean interaction in the western North Pacific:Part 1. Oceanogr., 24(4):24-31.
Domingues R, Goni G, Bringas F, Lee S K, Kim H S, Halliwell G, Dong J L, Morell J, Pomales L. 2015. Upper ocean response to Hurricane Gonzalo (2014):salinity effects revealed by targeted and sustained underwater glider observations. Geophys. Res. Lett., 42(17):7 131-7 138.
Emanuel K A. 1999. Thermodynamic control of hurricane intensity. Nature, 401(6754):665-669.
Fofonoff N P, Millard R C Jr. 1983. Algorithms for Computation of Fundamental Properties of Seawater. UNESCO Technical Papers in Marine Science, UNESCO, Paris.
Geisler J E. 1970. Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1(1-2):249-272.
Gill A E. 1984. On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14(7):1 129-1 151.
Ginis I. 2002. Tropical cyclone-ocean interactions. In:Perrie W ed. Atmosphere-Ocean Interactions. WIT Press, Southampton, 33:83-114.
Gonella J. 1972. A rotary-component method for analysing meteorological and oceanographic vector time series.Deep Sea Res. Oceanogr. Abstr., 19(12):833-846.
Greatbatch R J. 1984. On the response of the ocean to a moving storm:parameters and scales. J. Phys. Oceanogr., 14(1):59-78.
Guan S D, Zhao W, Huthnance J, Tian J W, Wang J H. 2014.Observed upper ocean response to typhoon Megi (2010)in the Northern South China Sea. J. Geophys. Res.Oceans, 119(5):3 134-3 157.
Jaimes B, Shay L K. 2010.Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40(6):1 320-1 337.
Knaff J A, DeMaria M, Sampson C R, Peak J E, Cummings J, Schubert W H. 2013. Upper oceanic energy response to tropical cyclone passage. J. Climate, 26(8):2 631-2 650.
Ko D S, Chao S Y, Wu C C, Lin I I. 2014. Impacts of typhoon Megi (2010) on the South China Sea. J. Geophys. Res.Oceans, 119(7):4 474-4 489.
Kuo Y C, Chern C S, Wang J, Tsai Y L. 2011. Numerical study of upper ocean response to a typhoon moving zonally across the Luzon Strait. Ocean Dyn., 61(11):1 783-1 795.
Leaman K D, Sanford T B. 1975. Vertical energy propagation of inertial waves:a vector spectral analysis of velocity profiles. J. Geophys. Res., 80(15):1 975-1 978.
Lee D K, Niiler P P. 1998. The inertial chimney:the nearinertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res. Oceans, 103(C4):7 579-7 591.
Li Z L, Wen P. 2017. Comparison between the response of the Northwest Pacific Ocean and the South China Sea to Typhoon Megi (2010). Adv. Atmos. Sci., 34(1):79-87.
Lin I I, Pun I F, Wu C C. 2009. Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part Ⅱ:dependence on translation speed. Mon. Wea. Rev., 137(11):3 744-3 757.
Lin I I. 2012. Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. Oceans, 117(C3):C03039.
Liu S S, Sun L, Wu Q Y, Yang Y J. 2017. The responses of cyclonic and anticyclonic eddies to typhoon forcing:the vertical temperature-salinity structure changes associated with the horizontal convergence/divergence. J. Geophys.Res. Oceans, 122(6):4 974-4 989.
Liu Z H, Xu J P, Sun C H, Wu X F. 2014. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanol. Sin., 33(11):90-101.
Liu Z, Hou Y J, Xie Q, Hu P, Liu Y H. 2015. The upper-ocean response to typhoons as measured at a moored acoustic Doppler current profiler. Chin. J. Oceanol. Limnol., 33(5):1 256-1 264.
Maneesha K, Murty V S N, Ravichandran M, Lee T, Yu W D, McPhaden M J. 2012. Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila.Prog. Oceanogr., 106:49-61.
Mei W, Lien C C, Lin I I, Xie S P. 2015. Tropical cycloneinduced ocean response:a comparative study of the South China Sea and tropical Northwest Pacific. J. Climate, 28(15):5 952-5 968.
Mei W, Pasquero C, Primeau F. 2012. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39(7):L07801.
Mei W, Pasquero C. 2013. Spatial and temporal characterization of sea surface temperature response to tropical cyclones.J. Climate, 26(11):3 745-3 765.
Meyers P C, Shay L K, Brewster J K, Jaimes B. 2016. Observed ocean thermal response to Hurricanes Gustav and Ike. J.Geophys. Res. Oceans, 121(1):162-179.
Oey L Y, Ezer T, Wang D P, Fan S J, Yin X Q. 2006. Loop Current warming by Hurricane Wilma. Geophys. Res.Lett., 33(8):L08613.
Pollard R T, Millard R C Jr. 1970. Comparison between observed and simulated wind-generated inertial oscillations. Deep Sea Res. Oceanogr. Abstr., 17(4):813-816, IN5, 817-821.
Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24(2):233-260.
Price J F, Weller R A, Pinkel R. 1986. Diurnal cycling:observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys.Res. Oceans, 91(C7):8 411-8 427.
Price J F. 1981. Upper ocean response to a hurricane. J. Phys.Oceanogr., 11(2):153-175.
Pun I F, Lin I I, Lien C C, Wu C C. 2018. Influence of the size of supertyphoon Megi (2010) on SST cooling. Mon. Wea.Rev., 146(3):661-677.
Shay L K, Elsberry R L. 1987. Near-inertial ocean current response to Hurricane Frederic. J. Phys. Oceanogr., 17(8):1 249-1 269.
Shu Y Q, Pan J Y, Wang D X, Chen G X, Sun L, Yao J L. 2016.Generation of near-inertial oscillations by summer monsoon onset over the South China Sea in 1998 and 1999. Deep Sea Res. I, 118:10-19.
Sun J R, Oey L Y, Chang R, Xu F H, Huang S M. 2015. Ocean response to typhoon Nuri (2008) in western Pacific and South China Sea. Ocean Dyn., 65(5):735-749.
Sun L, Yang Y J, Xian T, Wang Y, Fu Y F. 2012. Ocean responses to Typhoon Namtheun explored with Argo floats and multiplatform satellites. Atmos. Ocean., 50(S1):15-26.
Sun Z Y, Hu J Y, Zheng Q A, Li C Y. 2011. Strong near-inertial oscillations in geostrophic shear in the northern South China Sea. J. Oceanogr., 67(4):377-384.
Tseng Y H, Jan S, Dietrich D E, Lin I I, Chang Y T, Tang T Y. 2010.Modeled oceanic response and sea surface cooling to Typhoon Kai-Tak. Terr. Atmos. Ocean. Sci., 21(1):85-98.
Vincent E M, Emanuel K A, Lengaigne M, Vialard J, Madec G. 2014. Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst., 6(3):680-699.
Wang G H, Wu L W, Johnson N C, Ling Z. 2016. Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophys. Res. Lett., 43(14):7 632-7 638.
Watanabe M, Hibiya T. 2002. Global estimates of the windinduced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29(8):1 239.
Webster P J, Holland G J, Curry J A, Chang H R. 2005.Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742):1 844-1 846.
Wu C C, Tu W T, Pun I F, Lin I I, Peng M S. 2016. Tropical cyclone-ocean interaction in Typhoon Megi (2010)-A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J.Geophys. Res. Atmos., 121(1):153-167.
Yang B, Hou Y J, Hu P, Liu Z, Liu, Y H. 2015b. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. J. Geophys.Res. Oceans, 120(5):3 817-3 836.
Yang B, Hou Y J. 2014. Near-inertial waves in the wake of 2011 Typhoon Nesat in the northern South China Sea.Acta Oceanol. Sin., 33(11):102-111.
Yang B, Hou, Y J, Hu P. 2015a. Observed near-inertial waves in the wake of Typhoon Hagupit in the northern South China Sea. Chin. J. Oceanol. Limnol., 33(5):1 265-1 278.
Yang Y J, Sun L, Duan A M, Li Y B, Fu Y F, Yan Y F, Wang Z Q, Xian T. 2012. Impacts of the binary typhoons on upper ocean environments in November 2007. J. Appl. Remote Sens., 6(1):063583.
Zedler S E, Niiler P P, Stammer D, Terrill E, Morzel J. 2009.Ocean's response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds.J. Geophys. Res., 114:C04016.
Zhang H, Chen D, Zhou L, Liu X H, Ding T, Zhou B F. 2016.Upper ocean response to typhoon Kalmaegi (2014). J.Geophys. Res. Oceans, 121(8):6 520-6 535.
Copyright © Haiyang Xuebao