Cite this paper:
JIANG Zuzhou, SUN Zhilei, LIU Zhaoqing, CAO Hong, GENG Wei, XU Haixia, WANG Lisheng, WANG Libo. Rare-earth element geochemistry reveals the provenance of sediments on the southwestern margin of the Challenger Deep[J]. Journal of Oceanology and Limnology, 2019, 37(3): 998-1009

Rare-earth element geochemistry reveals the provenance of sediments on the southwestern margin of the Challenger Deep

JIANG Zuzhou1,2,3, SUN Zhilei2,3, LIU Zhaoqing4, CAO Hong2,3, GENG Wei2,3, XU Haixia5, WANG Lisheng6, WANG Libo2,3
1 School of Geosciences, China University of Petroleum, Qingdao 266580, China;
2 Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China;
4 China Three Gorges New Energy Corp., Beijing 100053, China;
5 Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
6 Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:
The hadal zone represents one of the last great frontiers in modern marine science, and deciphering the provenance of sediment that is supplied to these trench settings remains a largely unanswered question. Here, we examine the mineralogical and geochemical composition of a sediment core (core CD-1) that was recovered from the southwestern margin of the Challenger Deep within the Mariana Trench. Major element abundances and rare-earth element patterns from these sediments require inputs from both terrigenous dust and locally sourced volcanic debris. We exploit a two-endmember mixing model to demonstrate that locally sourced volcanic material dominates the sediment supply to the Challenger Deep (averaging~72%). The remainder, however, is supplied by aeolian dust (averaging~28%), which is consistent with adjacent studies that utilized Sr-Nd isotopic data. Building on a growing database, we strengthen our understanding of Asian aeolian dust input into the northwestern Pacific, which ultimately improves our appreciation of sedimentation in, and around, the hadal zone.
Key words:    Challenger Deep|sediment|rare-earth elements|provenance|Asian aeolian dust   
Received: 2018-03-05   Revised: 2018-04-24
Tools
PDF (1862 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by JIANG Zuzhou
Articles by SUN Zhilei
Articles by LIU Zhaoqing
Articles by CAO Hong
Articles by GENG Wei
Articles by XU Haixia
Articles by WANG Lisheng
Articles by WANG Libo
References:
Alibo D S, Nozaki Y. 1999. Rare earth elements in seawater:particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63(3-4):363-372.
Asahara Y, Tanaka T, Kamioka H, Nishimura A. 1995. Asian continental nature of 87Sr/86Sr ratios in north central Pacific sediments. Earth and Planetary Science Letters, 133(1-2):105-116.
Beiersdorf H. 1989. Provenance and accumulation rates of Pliocene and Quaternary sediments from the western Coral Sea. Geologische Rundschau, 78(3):987-998.
Berger W H. 1974. Deep-sea sedimentation. In:Burk C A, Drake C L eds. The Geology of Continental Margins.Springer, New York. p.213-234.
Chamley H. 1989. Clay Sedimentology. Springer, New York. 623p.
Deng X G, Yi L, Paterson G A, Qin H F, Wang H F, Yao H Q, Ren J B, Ge J Y, Xu H Z, Deng C L, Zhu R X. 2016.Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the middle Pleistocene:potential constraints for Antarctic bottom water circulation. International Geology Review, 58(1):49-57.
Douville E, Charlou J L, Oelkers E H, Bienvenu P, Jove Colon C F, Donval J P, Fouquet Y, Prieur D, Appriou P. 2002.The rainbow vent fluids (36°14'N, MAR):the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids.Chemical Geology, 184(1-2):37-48.
Dubinin A V. 2004. Geochemistry of rare earth elements in the Ocean. Lithology and Mineral Resources, 39(4):289-307.
Elderfield H, Greaves M J. 1982. The rare earth elements in seawater. Nature, 296(5854):214-219.
Fryer P. 1996. Evolution of the Mariana convergent plate margin system. Reviews of Geophysics, 34(1):89-125.
Gallo N D, Cameron J, Hardy K, Fryer P, Bartlett D H, Levin L A. 2015. Submersible- and lander-observed community patterns in the Mariana and New Britain trenches:influence of productivity and depth on epibenthic and scavenging communities. Deep Sea Research Part I:Oceanographic Research Papers, 99:119-133.
Gvirtzman Z, Stern R J. 2004. Bathymetry of Mariana trencharc system and formation of the Challenger Deep as a consequence of weak plate coupling. Tectonics, 23(2):TC2011.
Ikeda Y, Nagao K, Ishii T, Matsumoto D, Stern R J, Kagami H, Arima M, Bloomer S H. 2016. Contributions of slab fluid and sediment melt components to magmatism in the Mariana Arc-Trough system:evidence from geochemical compositions and Sr, Nd, and noble gas isotope systematics. Island Arc, 25(4):253-273.
Jamieson A J, Fujii T, Mayor D J, Solan M, Priede I G. 2010.Hadal trenches:the ecology of the deepest places on Earth. Trends in Ecology and Evolution, 25(3):190-197.
Jamieson A J. 2015. The Hadal Zone:Life in the Deepest Oceans. Cambridge University Press, United Kingdom. 382p.
Jiang F Q, Frank M, Li T G, Chen T Y, Xu Z K, Li A C. 2013.Asian dust input in the western Philippine Sea:evidence from radiogenic Sr and Nd isotopes. Geochemistry, Geophysics, Geosystems, 14(5):1 538-1 551.
Kremling K, Streu P. 1993. Saharan dust influenced trace element fluxes in deep North Atlantic subtropical waters.Deep Sea Research Part I:Oceanographic Research Papers, 40(6):1 155-1 168.
Li G S, Yang R, Zhang H R. 2007. Geochemistry and provenance of the PC5222 drill cores from the mid-Pacific Ocean. Sedimentary Geology and Tethyan Geology, 27(2):26-36. (in Chinese with English abstract)
Li Y H, Schoonmaker J E. 2003. Chemical composition and mineralogy of marine sediments. Treatise on Geochemistry, 7:1-35.
Liu N, Meng X W. 2004. Characteristics of rare earth elements in surface sediments from the middle Okinawa Trough:Implications for provenance of mixed sediments. Marine Geology & Quaternary Geology, 24(4):37-43. (in Chinese with English abstract)
Luo M, Algeo T J, Tong H P, Gieskes J, Chen L Y, Shi X F, Chen D F. 2017. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, https://doi.org/10.1016/j.dsr2.2017.01.006.
McLennan S M. 1989. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes.Reviews in Mineralogy and Geochemistry, 21:169-200.
Migdisov A A, Miklishanski A Z, Saveliev B V, Bredanova N V, Girin Y P, Pavlutskaya V I, Yakovlev Y V, Vernadsky V I. 1981. Neutron activation analysis of rare earth elements and some other trace elements in volcanic ashes and pelagic clays, Deep Sea Drilling Project Leg 59. In:Kroenke L, Scott R B, Balshaw K et al. eds. Initial Reports of the Deep Sea Drilling Project 59. U. S. Govt. Printing Office. p.653-668.
Ming J, Li A C, Huang J, Wan S M, Meng Q Y, Jiang F Q, Yan W W. 2014. Assemblage characteristics of clay minerals and its implications to evolution of eolian dust input to the Parece Vela Basin since 1.95 Ma. Chinese Journal of Oceanology and Limnology, 32(1):174-186.
Ming J. 2013. The characteristics and provenance of the sediment in the Parece Vela Basin since the Quaternary and their environmental implications. Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. p.1-118. (in Chinese with English abstract)
Nakanishi M, Hashimoto J. 2011. A precise bathymetric map of the world's deepest seafloor, Challenger Deep in the Mariana Trench. Marine Geophysical Research, 32(4):455-463.
Olivarez A M, Owen R M, Rea D K. 1991. Geochemistry of eolian dust in Pacific pelagic sediments:implications for paleoclimatic interpretations. Geochimica et Cosmochimica Acta, 55(8):2 147-2 158.
Palmer M R, Elderfield H. 1986. Rare earth elements and neodymium isotopes in ferromanganese oxide coatings of Cenozoic foraminifera from the Atlantic Ocean.Geochimica et Cosmochimica Acta, 50(3):409-417.
Ren X W, Yan Q S, Shi X F, Wang K S, Jiang X L. 2007.Mineral provinces and matter provenance of the surficial sediments in the western Philippine Sea:implication for modern sedimentation in West Pacific marginal basin.Acta Oceanologica Sinica, 26(3):44-55.
Rothwell R G. 1989. The smear slide method. In:Rothwell R G ed. Minerals and mineraloids in marine sediments.Springer, Netherlands. p.21-24.
Shao Y P, Wyrwoll K H, Chappell A, Huang J P, Lin Z H, McTainsh G H, Mikami M, Tanaka T Y, Wang X L, Yoon S. 2011. Dust cycle:an emerging core theme in Earth system science. Aeolian Research, 2(4):181-204.
Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:an isotopic and REE study of Cambrian phosphorites.Chemical Geology, 175(1-2):29-48.
Shigemitsu M, Narita H, Watanabe Y W, Harada N, Tsunogai S. 2007. Ba, Si, U, Al, Sc, La, Th, C and 13C/12C in a sediment core in the western subarctic Pacific as proxies of past biological production. Marine Chemistry, 106(3-4):442-455.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes. In:Saunders A D, Norry M J eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42:313-345.
Sverjensky D A. 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1):70-78.
Taira K, Kitagawa S, Yamashiro T, Yanagimoto D. 2004. Deep and bottom currents in the Challenger Deep, Mariana Trench, measured with super-deep current meters. Journal of Oceanography, 60(6):919-926.
Takahashi Y, Shimizu H, Usui A, Kagi H, Nomura, M. 2000.Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES). Geochimica et Cosmochimica Acta, 64(17):2 929-2 935.
Taylor S R, McLennan S M. 1985. The Continental Crust:Its Composition and Evolution. Blackwell, Malden, Mass. 312p.
Tian L Y, Zhao G T, Chen Z L, Wang Y L, Wu S Y. 2003. The preliminary study of petrological geochemistry of basalts from hydrothermal activity regions, Mariana Trough.Journal of Ocean University of Qingdao, 33(3):405-412.(in Chinese with English abstract)
Wan S M, Yu Z J, Clift P D, Sun H J, Li A C, Li T G. 2012.History of Asian eolian input to the West Philippine Sea over the last one million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 326-328:152-159.
Wang F L, He G W, Wang H F, Ren J B. 2016. Geochemistry of rare earth elements in a core from Mariana Trench and its significance. Marine Geology & Quaternary Geology, 36(4):67-75. (in Chinese with English abstract)
Wen Q Z, Diao G Y, Pan J Y, Wu M Q. 1996. Comparison of average chemical composition of loess in Loess Plateau with Clark values of crust. Acta Pedologica Sinica, 33(3):225-231. (in Chinese with English abstract)
Wood D A, Mattey D P, Joron J L, Marsh N G, Tarney J, Treuil M. 1981. A geochemical study of selected samples from the basement cores recovered at sites 447, 448, 449, 450, and 451, Deep Sea Drilling Project Leg 59. In:Kroenke L, Scott R B, Balshaw K et al. eds. Initial Reports of the Deep Sea Drilling Project 59. U. S. Govt. Printing Office.p.743-752.
Xu F J, Hu B Q, Dou Y G, Liu X T, Wan S M, Xu Z K, Tian X, Liu Z Q, Yin X B, Li A C. 2017. Sediment provenance and paleoenvironmental changes in the northwestern shelf mud area of the South China Sea since the mid-Holocene.Continental Shelf Research, 144:21-30.
Xu Z K, Li A C, Jiang F Q, Xu F J. 2008. Geochemical character and material source of sediments in the eastern Philippine Sea. Chinese Science Bulletin, 53(6):923-931.
Xu Z K, Li T G, Clift P D, Lim D I, Wan S M, Chen H J, Tang Z, Jiang F Q, Xiong Z F. 2015. Quantitative estimates of Asian dust input to the western Philippine Sea in the midlate Quaternary and its potential significance for paleoenvironment. Geochemistry, Geophysics, Geosystems, 16(9):3 182-3 196.
Xu Z K, Li T G, Li A C. 2013. Provenance of surficial sediments of the east Philippine Sea:evidence from rare earth elements. Marine Geology & Quaternary Geology, 33(2):1-7. (in Chinese with English abstract)
Xu Z K, Li T G, Wan S M, Yin X B, Jiang F Q, Sun H J, Choi J Y, Lim D I. 2014. Geochemistry of rare earth elements in the mid-late Quaternary sediments of the western Philippine Sea and their paleoenvironmental significance.Science China Earth Sciences, 57(4):802-812.
Zhang D Y. 1993. Clay mineralogy of the sediments deposited since the Pleistocene in the Mariana Trough and the west Philippine Basin. Acta Sedimentologica Sinica, 11(1):111-120. (in Chinese with English abstract)
Zhang F Y, Li A C, Lin Z H, Zhang W Y, Zhang X Y, Zhang J. 2006. Classification and nomenclature of deep sea sediments. Oceanologia et Limnologia Sinica, 37(6):517-523. (in Chinese with English abstract)
Copyright © Haiyang Xuebao