Cite this paper:
SHANGGUAN Jingbo, XU Anle, HU Xiaowei, LI Zhongbao. Isolation and characterization of genic microsatellites from de novo assembly transcriptome in the bivalve Ruditapes philippinarum[J]. HaiyangYuHuZhao, 2019, 37(3): 1071-1079

Isolation and characterization of genic microsatellites from de novo assembly transcriptome in the bivalve Ruditapes philippinarum

SHANGGUAN Jingbo1,2, XU Anle1,2, HU Xiaowei1,2, LI Zhongbao1,2
1 Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment, Xiamen 361021, China;
2 Fisheries College, Jimei University, Xiamen 361021, China
Abstract:
The marine bivalve Ruditapes philippinarum (Veneridae) has always been an economically important aquaculture species. In this study, 106 831 unigenes and 2 664 SSR loci (1 locus/40 sequences) were achieved from the de novo assembly transcriptome. Among all the SSRs, tri-nucleotides (46.40%) was the most, followed by di-nucleotides (32.43%). Meanwhile, AAC/GTT (19.82%) was the most common SSR loci searched. After polymorphism detection using 32 wild R. philippinarum individuals, 34 polymorphic and 3 monomorphic SSR loci were screened, and the genetic index of them was calculated. The results show that PIC of 30 polymorphic SSR loci was at medium and high levels (PIC>0.25). However, there were five SSR polymorphic loci (e.g. MG871423, MG871428, MG871429, MG871434, MG871435) deviating from the Hardy-Weinberg equilibrium after the Bonferroni correction (adjusted P=0.001 471). The Na value (number of alleles per locus) ranged from 2 to 7. In addition, the Ho (observed heterozygosities) and He (expected heterozygosities) were 0.100 0-1.000 0 and 0.191 3-0.723 6, respectively. Therefore, RNA-Seq was shown as a fast and cost-effective method for genic SSR development in non-model species. Meanwhile, the 37 loci from R. philippinarum will further enrich the genetic information and advance the population conservation and restoration.
Key words:    Ruditapes philippinarum|transcriptome|microsatellite|genetic diversity   
Received: 2018-03-28   Revised: 2018-06-12
Tools
PDF (280 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by SHANGGUAN Jingbo
Articles by XU Anle
Articles by HU Xiaowei
Articles by LI Zhongbao
References:
Bai Z Y, Zheng H F, Lin J Y, Wang G L, Li J L. 2013.Comparative analysis of the transcriptome in tissues secreting purple and white nacre in the pearl mussel Hyriopsis cumingii. PLoS One, 8(1):e53617.
Bouck A, Vision T. 2007. The molecular ecologist's guide to expressed sequence tags. Molecular Ecology, 16(5):907-924.
Chistiakov D A, Hellemans B, Volckaert F A M. 2006.Microsatellites and their genomic distribution, evolution, function and applications:a review with special reference to fish genetics. Aquaculture, 255(1-4):1-29.
Cong M, Wu H F, Cao T F, Lü J S, Wang Q, Ji C L, Li C H, Zhao J M. 2018. Digital gene expression analysis in the gills of Ruditapes philippinarum, exposed to short- and long-term exposures of ammonia nitrogen. Aquatic Toxicology, 194:121-131.
Ellis J R, Burke J M. 2007. EST-SSRs as a resource for population genetic analyses. Heredity, 99(2):125-132.
FAO (Food and Agriculture Organization). 2014. Fishery and Aquaculture Statistics 2010.Food and Agriculture Organization of the United Nations, Rome.
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7):644-652.
Hégaret H, da Silva P M, Wikfors G H, Lambert C, De Bettignies T, Shumway S E, Soudant P. 2007. Hemocyte responses of Manila clams, Ruditapes philippinarum, with varying parasite, Perkinsus olseni, severity to toxicalgal exposures. Aquatic Toxicology, 84(4):469-479.
Jiang Q, Li Q, Yu H, Kong L F. 2014. Genome-wide analysis of simple sequence repeats in marine animals-a comparative approach. Marine Biotechnology, 16(5):604-619.
Kong L F, Bai J, Li Q. 2014. Comparative assessment of genomic SSR, EST-SSR and EST-SNP markers for evaluation of the genetic diversity of wild and cultured Pacific oyster, Crassostrea gigas Thunberg. Aquaculture, 420-421:S85-S91.
Li J T, Li J, Chen P, Liu P, He Y Y. 2015. Transcriptome analysis of eyestalk and hemocytes in the ridgetail white prawn Exopalaemon carinicauda:assembly, annotation and marker discovery. Molecular Biology Reports, 42(1):135-147.
Lü Z M, Hou L, Gong L, Liu L Q, Chen Y J, Guo B Y, Dong Y H, Wu C W. 2017. Isolation and analysis on EST microsatellites of Sepiella japonica by de novo highthroughput transcriptome sequencing. Oceanologia et Limnologia Sinica, 48(4):877-883. (in Chinese with English abstract)
Mandal S, Jena J K, Singh R K, Mohindra V, Lakra W S, Deshmukhe G, Pathak A, Lal K K. 2016. De novo development and characterization of polymorphic microsatellite markers in a schilbid catfish, Silonia silondia (Hamilton, 1822) and their validation for population genetic studies. Molecular Biology Reports, 43(2):91-98.
Marshall T C, Slate J, Kruuk L E, Pemberton J M. 1998.Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7(5):639-655.
Nie H T, Niu H B, Zhao L Q, Yang F, Yan X W, Zhang G F. 2015. Genetic diversity and structure of Manila clam(Ruditapes philippinarum) populations from Liaodong peninsula revealed by SSR markers. Biochemical Systematics and Ecology, 59:116-125.
Nie H T, Zhu D P, Yang F, Zhao L Q, Yan X W. 2014.Development and characterization of EST-derived microsatellite makers for Manila clam (Ruditapes philippinarum). Conservation Genetics Resources, 6(1):25-27.
Parchman T L, Geist K S, Grahnen J A, Benkman C W, Buerkle C A. 2010.Transcriptome sequencing in an ecologically important tree species:assembly, annotation, and marker discovery. BMC Genomics, 11:180.
Qiu L J, Yang C, Tian B, Yang J B, Liu A Z. 2010.Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biology, 10:278.
Schorderet D F, Gartler S M. 1992. Analysis of CpG suppression in methylated and nonmethylated species.Proceedings of the National Academy of Sciences of the United States of America, 89(3):957-961.
Sun X J, Li D M, Liu Z H, Zhou L Q, Wu B, Yang A G. 2017.De novo assembly of pen shell (Atrina pectinata)transcriptome and screening of its genic microsatellites.Journal of Ocean University of China, 16(5):882-888.
van Oosterhout C, Hutchinson W F, Wills D P M, Shipley P. 2004. MICRO-CHECKER:software for identifying and correcting genotyping errors in microsatellite data.Molecular Ecology Notes, 4(3):535-538.
Varshney R K, Graner A, Sorrells M E. 2005b. Genic microsatellite markers in plants:features and applications.Trends in Biotechnology, 23(1):48-55.
Varshney R K, Sigmund R, Börner A, Korzun V, Stein N, Sorrells M E, Langridged P, Granera A. 2005a.Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science, 168(1):195-202.
Wen Y F, Uchiyama K, Han W J, Ueno S, Xie W D, Xu G B, Tsumura Y. 2013. Null alleles in microsatellite markers.Biodiversity Science, 21(1):117-126. (in Chinese with English abstract)
Wu H F, Liu X L, Zhao J M, Yu J B. 2011. NMR-based metabolomic investigations on the differential responses in adductor muscles from two pedigrees of Manila clam Ruditapes philippinarum to cadmium and zinc. Marine Drugs, 9(9):1 566-1 579.
Yamini K N, Ramesh K, Naresh V, Rajendrakumar P, Anjani K, Kumar V D. 2013. Development of EST SSR markers and their utility in revealing cryptic diversity in safflower(Carthamus tinctorius L.). Journal of Plant Biochemistry and Biotechnology, 22(1):90-102.
Yan L L, Qin Y J, Yan X W, Wang L N, Bi C L, Zhang J Y. 2015. Development of microsatellite markers in Ruditapes philippinarum using next-generation sequencing. Acta Ecologica Sinica, 35(5):1 573-1 580. (in Chinese with English abstract)
Yasuda N, Nagai S, Yamaguchi S, Lian C L, Hamaguchi M. 2007. Development of microsatellite markers for the Manila clam Ruditapes philippinarum. Molecular Ecology Notes, 7(1):43-45.
Yeh F C, Yang R, Boyle T J, Ye Z, Xiyan J M. 2000. PopGene 32, Microsoft Window-based freeware for population Genetic Analysis. Version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada.
Zhu D P, Nie H T, Qin Y J, Li J, Liu L H, Yan X W. 2015.Development and characterization of 38 microsatellite makers for Manila clam (Ruditapes philippinarum).Conservation Genetics Resources, 7(2):517-520.