Cite this paper:
ZHU Guoping, LIU Zijun, YANG Yang, WANG Zhen, YANG Wenjie, XU Liuxiong. Thermal and saline tolerance of Antarctic krill Euphausia superba under controlled in-situ aquarium conditions[J]. HaiyangYuHuZhao, 2019, 37(3): 1080-1089

Thermal and saline tolerance of Antarctic krill Euphausia superba under controlled in-situ aquarium conditions

ZHU Guoping1,2,3,4, LIU Zijun1,3,4, YANG Yang1,3,4, WANG Zhen1, YANG Wenjie1, XU Liuxiong1,2,3
1 College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
2 Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China;
3 National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China;
4 Polar Marine Ecosystem Group, Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
Abstract:
As a key species of the Southern Ocean ecosystem, the thermal and saline tolerances of Antarctic krill (Euphausia superba Dana) are relatively unknown because of the challenging environment and complicated situations needed for observation have inhibited in-situ experiments in the field. Hence, the thermal and saline tolerance of krill were examined under in-situ aquarium conditions with different controlled scenarios. According to the experiments, the critical lethal times of krill were 24 h, 2 h and 0.5 h under 9℃, 12℃, and 15℃, respectively, and the estimated 50% lethal times were about 17.1 h and 1.7 h under 12℃ and 15℃, respectively. Additionally, the critical lethal times (the estimated 50% lethal times) of krill were approximately 14 h and 0.5 h (about 22.9 h and 1.7 h) of salinity under 19.7 and 15.9, respectively. The observed critical and 50% lethal times of krill were 0.5 h and approximately 1.4 h, respectively, salinity under 55.2. The critical and 50% lethal temperatures of krill were 13℃ and approximately 14.2℃, respectively. Additionally, the critical and 50% lethal salinity was 19.6 and approximately 17.5 for the lower saline (below normal oceanic salinity[34.4]) environment and 50.3 and approximately 53.2 for the higher saline (above 34.4) environment, respectively. The upper thermal and saline preferences of krill can be considered 6℃ and 26.8 to 41.2, respectively. These results can provide potential scenarios for predicting the possible fate of this key species in the Southern Ocean.
Key words:    Euphausia superba|thermal tolerance|saline tolerance|thermal preference|in-situ aquarium experiment   
Received: 2018-01-17   Revised: 2018-05-03
Tools
PDF (864 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHU Guoping
Articles by LIU Zijun
Articles by YANG Yang
Articles by WANG Zhen
Articles by YANG Wenjie
Articles by XU Liuxiong
References:
Aarset A V, Aunaas T. 1987. Physiological adaptations to low temperature and brine exposure in the circumpolar amphipod Gammarus wilkitzkii. Polar Biology, 8(2):129-133.
Aarset A V, Torres J J. 1989. Cold resistance and metabolic responses to salinity variations in the amphipod Eusirus antarcticus and the krill Euphausia superba. Polar Biology, 9(8):491-497.
Atkinson A, Shreeve R S, Hirst A G, Rothery P, Tarling G A, Pond D W, Korb R E, Murphy E J, Watkins J L. 2006.Natural growth rates in Antarctic krill (Euphausia superba):Ⅱ. Predictive models based on food, temperature, body length, sex, and maturity stage.Limnology and Oceanography, 51(2):973-987.
Brown M, Kawaguchi S, Candy S, Virtue P. 2010.Temperature effects on the growth and maturation of Antarctic krill(Euphausia superba). Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 57(7-8):672-682.
Burrows M, Hoyle G. 1973. The mechanism of rapid running in the ghost crab, Ocypode ceratophthalma. Journal of Experimental Biology, 58:327-349.
Cook A J, Fox A J, Vaughan D G, Ferrigno J G. 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308(5721):541-544.
Dahms H U, Dobretsov S, Lee J S. 2011. Effects of UV radiation on marine ectotherms in polar regions.Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 153(4):363-371.
Díaz Herrera F, Bückle Ramirez L F. 1993. Thermoregulatory behaviour of Macrobrachium rosenbergii (Crustacea, Palaemonidae). Tropical Ecology, 43:199-203.
Dissanayake A, Ishimatsu A. 2011. Osmoregulatory ability and salinity tolerance in several decapod crustaceans(Palaemonidae & Penaeidae) of the East China Sea.Plankton and Benthos Research, 6(3):135-140.
Durack P J, Wijffels S E, Matear R J. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336(6080):455-458.
Flores H, Atkinson A, Kawaguchi S, Krafft B A, Milinevsky G, Nicol S, Reiss C, Tarling G A, Werner R, Bravo Rebolledo E, Cirelli, V, Cuzin-Roudy J, Fielding S, Groeneveld J J, Haraldsson M, Lombana A, Marschoff E, Meyer B, Pakhomov E A, Rombolá E, Schmidt K, Siegel V, Teschke M, Tonkes H, Toullec J Y, Trathan P N, Tremblay N, Van De Putte A P, Van Franeker J A, Werner T. 2012. Impact of climate change on Antarctic krill. Marine Ecology Progress Series, 458:1-19.
Florey E, Hoyle G. 1976. The effects of temperature on a nerve-muscle system of the Hawaiian ghost crab, Ocypode ceratophthalma (Pallas). Journal of Comparative Physiology, 110(1):51-64.
Forward R B Jr, Fyhn H J. 1983. Osmotic regulation of the krill Meganyctiphanes norvegica. Comparative Biochemistry and Physiology Part A:Physiology, 74(2):301-305.
Gradinger R, Schnack-Schiel S B. 1998. Potential effect of ice formation on Antarctic pelagic copepods:salinity induced mortality of Calanus propinquus and Metridia gerlachei in comparison to sympagic acoel turbellarians. Polar Biology, 20(2):139-142.
Hirche H J. 1984. Temperature and metabolism of plankton-I.Respiration of Antarctic zooplankton at different temperatures with a comparison of antarctic and Nordic krill. Comparative Biochemistry and Physiology Part A:Physiology, 77(2):361-368.
Ikeda T, Dixon P. 1982. Body shrinkage as a possible overwintering mechanism of the Antarctic krill, Euphausia superba Dana. Journal of Experimental Marine Biology and Ecology, 62(2):143-151.
Jarman S, Elliott N, Nicol S, McMinn A, Newman S. 1999.The base composition of the krill genome and its potential susceptibility to damage by UV-B. Antarctic Science, 11(1):23-26.
Jia Z N, Virtue P, Swadling K M, Kawaguchi S. 2014. A photographic documentation of the development of Antarctic krill (Euphausia superba) from egg to early juvenile. Polar Biology, 37(2):165-179.
Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A. 2013. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change, 3(9):843-847.
Kawaguchi S, Kurihara H, King R, Hale L, Berli T, Robinson J P, Ishida A, Wakita M, Virtue P, Nicol S, Ishimatsu A. 2011. Will krill fare well under Southern Ocean acidification? Biology Letters, 7(2):288-291.
Kivivuori L. 1983. Temperature acclimation of walking in the crayfish Astacus astacus L. Comparative Biochemistry and Physiology Part A:Physiology, 75(3):375-378.
Korhonen A I, Lagerspetz K Y H. 1996. Heat shock response and thermal acclimation in Asellus aquaticus. Journal of Thermal Biology, 21(1):49-56.
Lagerspetz K Y H, Vainio L A. 2006. Thermal behaviour of crustaceans. Biological Reviews, 81(2):237-258.
Lagerspetz K Y H. 2003. Thermal acclimation without heat shock, and motor responses to a sudden temperature change in Asellus aquaticus. Journal of Thermal Biology, 28(5):421-427.
Lance J. 1963. The salinity tolerance of some estuarine planktonic copepods. Limnology and Oceanography, 8(4):440-449.
Lehti-Koivunen S M, Kivivuori L A. 1994. Effect of temperature acclimation in the crayfish Astacus astacus L.on the locomotor activity during a cyclic temperature change. Journal of Thermal Biology, 19(5):299-304.
Li E C. 2008. Physiological effects of ambient salinity on Litopenaeus vannamei and nutrient modulation. East China Normal University, Shanghai. 155 pp. (in Chinese with English abstract)
Loeb V J, Hofmann E E, Klinck J M, Holm-Hansen O, White W B. 2009. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Antarctic Science, 21(2):135-148.
Lysack W. 1980. 1979 Cedar Lake Winnipeg Fish Stock Assessment Program. MS Report No. 30. Manitoba Department of Natural Resources, Canada.
McKenzie J D, Calow P, Clyde J, Miles A, Dickinson R, Lieb W R, Franks N P. 1992. Effects of temperature on the anaesthetic potency of halothane, enflurane and ethanol in Daphnia magna (Cladocera:Crustacea). Comparative Biochemistry and Physiology Part C:Comparative Pharmacology, 101(1):15-19.
McLeese D W, Wilder D G. 1958. The activity and catchability of the lobster (Homarus americanus) in relation to temperature. Journal of the Fisheries Research Board of Canada, 15(6):1 345-1 354.
McWhinnie M A, Marciniak P. 1964. Temperature responses and tissue respiration in Antarctic crustacea with particular references to the krill Euphausia superba. In:Lee M O ed.Biology of the antarctic seas. American Geophysical Union, Washington, DC. p.63-72.
Meredith M, King J C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32(19):L19604
Meyer B, Fuentes V, Guerra C, Schmidt K, Atkinson A, Spahic S, Cisewski B, Freier U, Olariaga A, Bathmanna U. 2009.Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnology and Oceanography, 54(5):1 595-1 614
Newman S J, Nicol S, Ritz D, Marchant H. 1999. Susceptibility of Antarctic krill (Euphausia superba Dana) to ultraviolet radiation. Polar Biology, 22(1):50-55.
Newman S J, Ritz D, Nicol S. 2003. Behavioural reactions of Antarctic krill (Euphausia superba Dana) to ultraviolet and photosynthetically active radiation. Journal of Experimental Marine Biology and Ecology, 297(2):203-217.
Nicol S. 2006. Krill, currents, and sea ice:Euphausia superba and its changing environment. BioScience, 56(2):111-120.
Poleck T P, Denys C J. 1982. Effect of temperature on the molting, growth and maturation of the Antarctic krill Euphausia superba (Crustacea:Euphausiacea) under laboratory conditions. Marine Biology, 70(3):255-265.
Quetin, L B, Ross R M, Frazer T K, Haberman K L. 1996.Factors affecting distribution and abundance of zooplankton, with an emphasis on Antarctic krill, Euphausia superba. In:Ross R M, Hofmann E E, Quetin L B eds. Foundations for Ecological Research West of the Antarctic Peninsula. American Geo-physical Union, Washington, DC. p.357-371.
Rakusa-Suszczewski S, McWhinnie M A. 1976. Resistance to freezing by Antarctic fauna:supercooling and osmoregulation. Comparative Biochemistry and Physiology Part A:Physiology, 54(3):291-300.
Reynolds W W, Casterlin M E. 1979a. Behavioral thermoregulation and activity in Homarus americanus.Comparative Biochemistry and Physiology Part A:Physiology, 64(1):25-28.
Reynolds W W, Casterlin M E. 1979b. Behavioral thermoregulation and the “Final Preferendum” paradigm.Integrative and Comparative Biology, 19(1):211-224.
Rokneddine A, Chentoufi M. 2004. Study of salinity and temperature tolerance limits regarding four crustacean species in a temporary salt water swamp (Lake Zima, Morocco). Animal Biology, 54(3):237-253.
Rye C D, Naveira Garabato A C, Holland P R, Meredith M P, George Nurser A J, Hughes C W, Coward A C, Webb D J. 2014. Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nature Geoscience, 7(10):732-735.
Sander F, Moore E. 1979. Temperature and salinity tolerance limits of the marine gastropod Murex pomum. Comparative Biochemistry and Physiology Part A:Physiology, 64(2):285-289.
Schaafsma F L, Kohlbach D, David C, Lange B A, Graeve M, Flores H, Van Franeker J A. 2017. Spatio-temporal variability in the winter diet of larval and juvenile Antarctic krill, Euphausia superba, in ice-covered waters.Marine Ecology Progress Series, 580:101-115.
Tarling G A, Shreeve R S, Hirst A G, Atkinson A, Pond D W, Murphy E J, Watkins J L. 2006. Natural growth rates in Antarctic krill (Euphausia superba):I. Improving methodology and predicting intermolt period. Limnology and Oceanography, 51(2):959-972.
Torres G, Giménez L, Anger K. 2011. Growth, tolerance to low salinity, and osmoregulation in decapod crustacean larvae.Aquatic Biology, 12(3):249-260.
Tremblay N, Abele D. 2016. Response of three krill species to hypoxia and warming:an experimental approach to oxygen minimum zones expansion in coastal ecosystems.Marine Ecology, 37(1):179-199.
Van Ngan P, Gomes V, Carvalho P S M, De A C R Passos M J. 1997. Effect of body size, temperature and starvation on oxygen consumption of Antarctic krill Euphausia superba. Revista Brasileira de Oceanografia, 45(1-2):1-10.
Wernberg T, Smale D A, Thomsen M S. 2012. A decade of climate change experiments on marine organisms:procedures, patterns and problems. Global Change Biology, 18(5):1 491-1 498.
Whitehouse M J, Meredith M P, Rothery P, Atkinson A, Ward P, Korb R E. 2008. Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century:forcings, characteristics and implications for lower trophic levels. Deep Sea Research Part I:Oceanographic Research Papers, 55(10):1 218-1 228.
Zhu G P, Dai X J, Xu L X, Zhou Y Q. 2010.Reproductive biology of bigeye tuna, Thunnus obesus, (Scombridae) in the eastern and central tropical Pacific Ocean.Environmental Biology of Fishes, 88(3):253-260.