Cite this paper:
HE Jingjing, HAN Xueshuang, LIN Xiaopei. Seasonal response of surface wind to SST perturbation in the Northern Hemisphere[J]. Journal of Oceanology and Limnology, 2019, 37(4): 1165-1175

Seasonal response of surface wind to SST perturbation in the Northern Hemisphere

HE Jingjing1, HAN Xueshuang2, LIN Xiaopei1
1 Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China;
2 Research Vessel Center, Ocean University of China, Qingdao 266100, China
Abstract:
The seasonal response of surface wind speed to sea surface temperature (SST) change in the Northern Hemisphere was investigated using 10 years (2002-2011) high-resolution satellite observations and reanalysis data. The results showed that correlation between surface wind speed perturbations and SST perturbations exhibits remarkable seasonal variation, with more positive correlation is stronger in the cold seasons than in the warm seasons. This seasonality in a positive correlation between SST and surface wind speed is attributable primarily to seasonal changes of oceanic and atmospheric background conditions in frontal regions. The mean SST gradient and the prevailing surface winds are strong in winter and weak in summer. Additionally, the eddy-induced response of surface wind speed is stronger in winter than in summer, although the locations and numbers of mesoscale eddies do not show obvious seasonal features. The response of surface wind speed is apparently due to stability and mixing within the marine atmospheric boundary layer (MABL), modulated by SST perturbations. In the cold seasons, the stronger positive (negative) SST perturbations are easier to increase (decrease) the MABL height and trigger (suppress) momentum vertical mixing, contributing to the positive correlation between SST and surface wind speed. In comparison, SST perturbations are relatively weak in the warm seasons, resulting in a weak response of surface wind speed to SST changes. This result holds for each individual region with energetic eddy activity in the Northern Hemisphere.
Key words:    seasonality|positive correlation|sea surface temperature (SST) gradient|marine atmospheric boundary layer (MABL) height|mesoscale eddy   
Received: 2018-06-27   Revised: 2018-08-08
Tools
PDF (7766 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by HE Jingjing
Articles by HAN Xueshuang
Articles by LIN Xiaopei
References:
Chelton D B, Schlax M G, Freilich M H, Milliff R H. 2004.Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303(5660):978-983.
Chelton D B, Schlax M G, Samelson R M. 2007. Summertime coupling between sea surface temperature and wind stress in the california current system. J. Phys. Oceanogr., 37(3):495-517, https://doi.org/10.1175/JPO3025.1.
Chelton D B, Xie S P. 2010. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23(4):52-69.
Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F. 2011. The ERA-Interim reanalysis:configuration and performance of the data assimilation system. Quart. J.Roy. Meteor. Soc., 137(656):553-597.
Gaube P, Chelton D B, Samelson R M, Schlax M G, O'Neill L W. 2014. Satellite observations of mesoscale eddyinduced Ekman pumping. J. Phys. Oceanogr., 45(1):104-132, https://doi.org/10.1175/JPO-D-14-0032.1.
Hashizume H, Xie S P, Liu W T, Takeuchi K. 2001. Local and remote atmospheric response to tropical instability waves:a global view from space. J. Geophys. Res., 106(D10):10 173-10 185.
He Z Q, Wu R G. 2013. Seasonality of interannual atmosphereocean interaction in the South China Sea. J. Oceanogr., 69(6):699-712, https://doi.org/10.1007/s10872-013-0201-9.
Kelly K A, Small R J, Samelson R M, Qiu B, Joyce T M, Kwon Y, Cronin M F. 2010. Western boundary currents and frontal air-sea interaction:gulf Stream and Kuroshio Extension. J. Climate, 23(21):5 644-5 667, https://doi.org/10.1175/2010JCLI3346.1.
Kobashi F, Xie S P, Iwasaka N, Sakamoto T T. 2008. Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J. Climate, 21(22):5 960-5 975, https://dor.org/10.1175/2008JCLI2311.1.
Liu J W, Xie S P, Norris J R, Zhang S P. 2014. Low-level cloud response to the Gulf Stream front in winter using CALIPSO. J. Climate, 27(12):4 421-4 432.
Liu J W, Zhang S P, Xie S P. 2013. Two types of surface wind response to the East China Sea Kuroshio front. J. Climate, 26(21):8 616-8 627, https://doi.org/10.1175/JCLI-D-12-00092.1.
Liu W T, Xie X S, Niiler P P. 2007. Ocean-atmosphere interaction over Agulhas extension meanders. J. Climate, 20(23):5 784-5 797.
Ma J, Xu H M, Dong C M. 2016a. Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension. Tellus A, 68(1):31 563, https://doi.org/10.3402/tellusa.v68.31563.
Ma X H, Jing Z, Chang P, Liu X, Montuoro R, Small R J, Bryan F O, Greatbatch R J, Brandt P, Wu D X, Lin X P, Wu L X. 2016b. Weatern boundary currents regulated by interaction between ocean eddies and the atmosphere.Nature, 535(7613):533-537, https://doi.org/10.1038/nature18640.
Minobe S, Kuwano-Yoshida A, Komori N, Xie S P, Small R J. 2008. Influence of the Gulf Stream on the troposphere.Nature, 452(7184):206-209.
Minobe S, Miyashita M, Kuwano-Yoshida A, Tokinaga H, Xie S P. 2010. Atmospheric response to the Gulf Stream:seasonal variations. J. Climate, 23(13):3 699-3 719.
Nakamura H, Sampe T, Tanimoto Y, Shimpo A. 2004. Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. In:Earth's Climate:The Ocean-Atmosphere Interaction. AGU, Washington, p.329-345.
O'Neill L W, Chelton D B, Esbensen S K. 2003. Observations of SST-induced perturbations of the wind stress field over the southern ocean on seasonal timescales. J. Climate, 16(14):2 340-2 354, https://doi.org/10.1175/2780.1.
O'Reilly C H, Czaja A. 2015. The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141(686):52-66.
O'Neill L W, Chelton D B, Esbensen S K, Wentz F J. 2005.High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the agulhas return current. J. Climate, 18(14):2 706-2 723, https://doi.org/10.1175/JCLI3415.1.
O'Neill L W, Esbensen S K, Thum N, Samelson R M, Chelton D B. 2010. Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J.Climate, 23(3):559-581.
Park S, Deser C, Alexander M A. 2005. Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18(21):4 582-4 599, https://doi.org/10.1175/JCLI3521.1.
Small R J, Bacmeister J, Bailey D, Baker A, Bishop S, Bryan F, Caron J, Dennis J, Gent P, Hsu H M, Jochum M, Lawrence D, Muñoz E, diNezio P, Scheitlin T, Tomas R, Tribbia J, Tseng Y H, Vertenstein M. 2014. A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Rarth Syst., 6(4):1 065-1 094, https://doi.org/10.1002/2014MS000363.
Small R J, deSzoeke S P, Xie S P, O'Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S. 2008. Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45(3-4):274-319.
Spall M A. 2007. Effect of sea surface temperature-wind stress coupling on Baroclinic instability in the ocean. J. Phys.Oceanogr., 37(4):1 092-1 097, https://doi.org/10.1175/JPO3045.1.
Taguchi B, Nakamura H, Nonaka M, Xie S P. 2009. Influences of the Kuroshio/Oyashio Extensions on air-sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22(24):6 536-6 560.
Tanimoto Y, Nakamura H, Kagimoto T, Yamane S. 2003. An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux.J. Geophys. Res., 108(C10):3 304, https://doi.org/10. 1029/2002JC001750.
Tanimoto Y, Xie S P, Kai K, Okajima H, Tokinaga H, Murayama T, Nonaka M, Nakamura H. 2009. Observations of marine atmospheric boundary layer transitions across the summer Kuroshio Extension. J. Climate, 22(6):1 360-1 374, https://doi.org/10.1175/2008JCLI2420.1.
Tokinaga H, Tanimoto Y, Xie S P, Sampe T, Tomita H, Ichikawa H. 2009. Ocean frontal effects on the vertical development of clouds over the western North Pacific:in situ and satellite observations. J. Climate, 22(16):4 241-4 260.
Tokinaga H, Tanimoto Y, Xie S P. 2005. SST-induced surface wind variations over the Brazil-Malvinas Confluence:satellite and in situ observations. J. Climate, 18(17):3 470-3 482, https://doi.org/10.1175/JCLI3485.1.
Wallace J M, Mitchell T P, Deser C. 1989. The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific:seasonal and interannual variability. J.Climate, 2(12):1 492-1 499.
Xie S P. 2004. Satellite observations of cool ocean-atmosphere interaction. Bull. Am. Meteor. Soc., 85(2):195-208.
Xu H M, Xu M M, Xie S P, Wang Y Q. 2011. Deep atmospheric response to the spring Kuroshio over the East China Sea.J. Climate, 24(18):4 959-4 972, https://doi.org/10.1175/JCLI-D-10-05034.1.
Xu M M, Xu H M. 2015. Atmospheric responses to Kuroshio SST front in the East China Sea under different prevailing winds in winter and spring. J. Climate, 28(8):3 191-3 211, https://doi.org/10.1175/JCLI-D-13-00675.1.
Copyright © Haiyang Xuebao