Cite this paper:
KIM Hansoo, KANG Donhyug, JUNG Seung Won, KIM Mira. High-frequency acoustic backscattering characteristics for acoustic detection of the red tide species Akashiwo sanguinea and Alexandrium affine[J]. Journal of Oceanology and Limnology, 2019, 37(4): 1268-1276

High-frequency acoustic backscattering characteristics for acoustic detection of the red tide species Akashiwo sanguinea and Alexandrium affine

KIM Hansoo1,2, KANG Donhyug1, JUNG Seung Won3, KIM Mira1
1 Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Korea;
2 Department of Ocean System Engineering, Jeju National University, Jeju 63243, Korea;
3 Library of Marine Samples, Korea Institute of Ocean Science & Technology (KIOST), Geoje 53201, Korea
Abstract:
Harmful algal blooms (HABs), caused by the overgrowth of certain phytoplankton species, have negative effects on marine environments and coastal fisheries. In addition to cell-counting methods using phytoplankton nets, a hydroacoustic technique based on acoustic backscattering has been proposed for the detection of phytoplankton blooms. However, little is known of the acoustic properties of HAB species. In this study, as essential data to support this technique, we measured the acoustic properties of two HAB species, Akashiwo sanguinea and Alexandrium affine, which occur in the South Sea off the coast of Korea. Due to the small size of the target, we used ultrasound for the measurements. Experiments were conducted under laboratory and field conditions. In the laboratory experiment, the acoustic signal received from each species was directly proportional to the cell abundance. We derived a relationship between the cell abundance and acoustic signal received for each species. The measured signals were compared to predictions of a fluid sphere scattering model. When A. sanguinea blooms appeared at an abundance greater than 3 500 cells/mL, the acoustic signals varied with cell abundance, showing a good correlation. These results confirm that acoustic measurements can be used to detect HAB species.
Key words:    acoustic backscattering|Akashiwo sanguinea|Alexandrium affine|fluid-sphere scattering model|harmful algal blooms (HABs)|red tide   
Received: 2018-04-30   Revised: 2018-07-19
Tools
PDF (1997 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by KIM Hansoo
Articles by KANG Donhyug
Articles by JUNG Seung Won
Articles by KIM Mira
References:
Ahn Y H, Shanmugam P, Chang K I, Moon J E, Ryu J H. 2005.Spatial and temporal aspects of phytoplankton blooms in complex ecosystems off the Korean coast from satellite ocean color observations. Ocean Sci. J., 40(2):67-71.
Anderson D M. 1998. Physiology and bloom dynamics of toxic Alexandrium species, with emphasis on life cycle transitions. In:Anderson D M, Cembella A D, Hallegraeff G M eds. Physiological Ecology of Harmful Algal Blooms. Springer, Berlin Heidelberg. p.29-48.
Anglès S, Jordi A, Garcés E, Masó M, Basterretxea G. 2008.High-resolution spatio-temporal distribution of a coastal phytoplankton bloom using laser in situ scattering and transmissometry (LISST). Harmful Algae, 7(6):808-816.
Badylak S, Phlips E J, Mathews A L, Kelley K. 2014. Akashiwo sanguinea (Dinophyceae) extruding mucous from pores on the cell surface. Algae, 29(3):197-201.
Bok T H, Paeng D G, Kim E, Na J, Kang D. 2010. Ultrasound backscattered power from Cochlodinium polykrikoides, the main red tide species in the Southern Sea of Korea. J.Plankton. Res., 32(4):503-514.
Crawford G B, Farmer D M. 1987. On the spatial distribution of ocean bubbles. J. Geophys. Res., 92(8):8 231-8 243.Eppley R W, Holmes R W, Strickland J D H. 1967. Sinking rates of marine phytoplankton measured with a fluorometer. J. Exp. Mar. Biol. Ecol., 1(2):191-208.
Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In:Smith W L, Chanley M H eds.Culture of Marine Invertebrate Animals. Springer, Boston, MA. p.29-60.
Jeong S O, An G H. 2011. The fluctuations of Cochlodinium polykrikoides blooms in coastal waters of Korea. In:Proceedings of the Korean Society of Environment and Ecology Conference. Daegu University, Daegu. p.57-58.
Jessup D A, Miller M A, Ryan J P, Nevins H M, Kerkering H A, Mekebri A, Crane D B, Johnson T A, Kudela R M. 2009. Mass stranding of marine birds caused by a surfactant-producing red tide. PLoS One, 4(2):e4550.
Johnson R K. 1977. Sound scattering from a fluid sphere revisited. J. Acoust. Soc. Am., 61(2):375-377.
Katano T, Yoshida M, Yamaguchi S, Hamada T, Yoshino K, Hayami Y. 2011. Diel vertical migration and cell division of bloom-forming dinoflagellate Akashiwo sanguinea in the Ariake Sea, Japan. Plankton Benthos Res., 6(2):92-100.
Kim E, Lee H, Na J, Choi J W, Kang D. 2010. 5-MHz acousticbackscatter measurements of Cochlodinium polykrikoides blooms in Korean coastal waters. ICES J. Mar. Sci., 67(8):1 759-1 765.
Kim H, Bok T H, Paeng D G, Kim J, Nam K H, Lee J B, Shah M M R. 2017. Mobility of Amphidinium carterae Hulburt measured by high-frequency ultrasound. J. Acoust. Soc.Am., 141(4):EL395-EL401.
Kim H, Kang D, Jung S W. 2018. Development and application of an acoustic system for harmful algal blooms (HABs, red tide) detection using an ultrasonic digital sensor.Ocean Sci. J., 53(1):91-99.
Kim H G. 2005. Harmful Algal Blooms in the Sea. Dasom Publishing Co, Seoul. 467p.
Kim H G. 2010. An overview on the occurrences of harmful algal blooms (HABs) and mitigation strategies in Korean coastal waters. In:Ishimatsu A, Lie H J eds. Coastal Environmental and Ecosystem Issues of the East China Sea. TERRAPUB and Nagasaki University, Tokyo. p.121-131.
Kim J, Choi J W, Kang D. 2012. Laboratory experiment to measure 5-MHz volume backscattering strengths from red-tide causing microalgae Chattonella antiqua. Ocean Sci. J., 47(3):173-179.
Kim J S, Park K W, Youn S H, Lim W A, Yoo Y D, Seong K A, Yih W H. 2016. Species diversity of the dinoflagellate genus Alexandrium in the coastal waters of Korea during summer 2013. Korean Soc. Oceanogr., 21(4):158-170.
Kudela R M, Gobler C J. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.:global expansion and ecological strategies facilitating bloom formation.Harmful Algae, 14:71-86.
Kwon H K, Oh S J. 2014. Growth response of the Dinoflagellate Akashiwo sanguinea in relation to temperature, salinity and irradiance, and its advantage in species succession. J.Korean Soc. Mar. Environ. Saf., 20(1):1-10.
Lee C K, Lee O H, Lee S M. 2005. Impacts of temperature, salinity and irradiance on the growth of ten harmful algal bloom-forming microalgae isolated in Korean coastal waters. J. Korean Soc. Oceanogr., 10(1):79-91.
Lee K H, Jeong H J, Kwon J E, Kang H C, Kim J H, Jang S H, Park J Y, Yoon E Y, Kim J S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae, 59:67-81.
Lee Y S, Lee S Y. 2006. Factors affecting outbreaks of Cochlodinium polykrikoides blooms in coastal areas of Korea. Mar. Pollut. Bull., 52(6):626-634.
Lim W A, Lee Y S, Lee S G. 2008. Characteristic of environmental factors related to outbreak and decline of Cochlodinium polykrikoides bloom in the southeast coastal waters of Korea, 2007. J. Korean Soc. Oceanogr., 13(3):325-332.
Matsubara T, Nagasoe S, Yamasaki Y, Shikata T, Shimasaki Y, Oshima Y, Honjo T. 2007. Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea. J. Exp. Mar. Biol. Ecol., 342(2):226-230.
Medwin H, Clay C S. 1998. Fundamentals of Acoustical Oceanography. Academic Press, Boston, MA. 712p.Nguyen-Ngoc L. 2004. An autecological study of the potentially toxic dinoflagellate Alexandrium affine isolated from Vietnamese waters. Harmful Algae, 3(2):117-129.
NIFS (National Institute of Fisheries Science, Korea). 2018.Standard of harmful algal blooms forecast in Korea.http://www.nifs.go.kr/red/operation_4.red. Accessed on 2018-07-01. (in Korean)
Oliver R L, Kinnear A J, Ganf G G. 1981. Measurements of cell density of three freshwater phytoplankters by density gradient centrifugation. Limnol. Oceanogr., 26(2):285-294.
Rabalais N N, Turner R E, Díaz R J, Justić D. 2009. Global change and eutrophication of coastal waters. ICES J. Mar.Sci., 66(7):1 528-1 537.
Rhodes L L, Mackenzie A L, Kaspar H F, Todd K E. 2001.Harmful algae and mariculture in New Zealand. ICES J.Mar. Sci., 58(2):398-403.
Simmonds J, MacLennan D N. 2005. Fisheries Acoustics:Theory and Practice. 2nd edn. Blackwell, Oxford, UK. 437p.
Steidinger K A, Tangen K. 1997. Dinoflagellates. In:Tomas C R ed. Identifying Marine Phytoplankton. Academic Press, San Diego. p.387-598.
Tang Y Z, Gobler C J. 2015. Sexual resting cyst production by the dinoflagellate Akashiwo sanguinea:a potential mechanism contributing to the ubiquitous distribution of a harmful alga. J. Phycol., 51(2):298-309.
Van Ierland E T, Peperzak L. 1984. Separation of marine seston and density determination of marine diatoms by density gradient centrifugation. J. Plankton Res., 6(1):29-44.
Copyright © Haiyang Xuebao