Cite this paper:
ZHANG Man, SMYTH Rebecca Ashley, ZHU Weixia, ZHANG Li, LI Yuncong, WANG Yifan, LI Xuejun, GU Qianhong, GAO Yunni. Spatial distribution and filtering efficiency of Daphnia in a deep subtropical reservoir[J]. Journal of Oceanology and Limnology, 2019, 37(4): 1277-1288

Spatial distribution and filtering efficiency of Daphnia in a deep subtropical reservoir

ZHANG Man1,2, SMYTH Rebecca Ashley2, ZHU Weixia3, ZHANG Li3, LI Yuncong2, WANG Yifan1, LI Xuejun1, GU Qianhong1, GAO Yunni1
1 College of Fisheries, Henan Normal University, Xinxiang 453007, China;
2 Tropical Research and Education Centre, University of Florida, Homestead 33031, U.S.;
3 Henan Entry-Exit Inspection and Quarantine Bureau, Zhengzhou 450003, China
Abstract:
Studies of Daphnia distribution and function could help people manage and protect water quality. We investigated how spatial distribution and filtering efficiency of Daphnia in the transition and lacustrine zones of the Nanwan Reservoir (China). Samplings were conducted seasonally for 2 years from six sites in the reservoir. Daphnia abundance and biomass were significantly higher in the lacustrine zone than in the transition zone. Similar composition and biomass of edible phytoplankton were found in the two zones, suggesting that food quantity could not explain high Daphnia distribution in the lacustrine zone. The variations of water velocity and food quality could help explaining Daphnia patchy distribution in the reservoir. On the one hand, rapid water velocity can cause the Daphnia decrement in the transition zone. On the other hand, the ratio of particulate organic carbon (POC) to chlorophyll a (chl a) concentration was significantly higher in the transition zone, indicating more allochthonous material constituted the food source for Daphnia. The lower quality food likely suppressed Daphnia development in the transition zone. A linear regression between Daphnia abundance and Secchi depth (SD) may suggest a cause-effect relationship where increased filtering efficiency was responsible for increased water clarity to some extent.
Key words:    Daphnia|lacustrine zone|transition zone|water clarity|Nanwan Reservoir   
Received: 2018-04-20   Revised: 2018-08-14
Tools
PDF (1031 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHANG Man
Articles by SMYTH Rebecca Ashley
Articles by ZHU Weixia
Articles by ZHANG Li
Articles by LI Yuncong
Articles by WANG Yifan
Articles by LI Xuejun
Articles by GU Qianhong
Articles by GAO Yunni
References:
Adrian R, O'Reilly C M, Zagarese H, Baines S B, Hessen D O, Keller W, Livingstone D M, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer G A, Winder M. 2009. Lakes as sentinels of climate change. Limnol. Oceanogr., 54(6):2 283-2 297.
Altshuler I, Demiri B, Xu S, Constantin A, Yan N D, Cristescu M E. 2011. An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems:Daphnia as a model organism. Integr. Comp. Biol., 51(4):623-633.
American Public Health Association (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17th edn. APHA-AWWA-WPCF, Washington DC.
Betini G S, Avgar T, McCann K S, Fryxell J M. 2017. Daphnia inhibits the emergence of spatial pattern in a simple consumer-resource system. Ecology, 98(4):1 163-1 170.
Brett M T, Kainz M J, Taipale S J, Seshan H. 2009.Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl. Acad.Sci. USA, 106(50):21 197-21 201.
Burns C W. 1968. The relationship between body size of filterfeeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr., 13(4):675-678.
Burns C W. 1969. Relation between filtering rate, temperature, and body size in four species of Daphnia. Limnol.Oceanogr., 14(5):693-700.
Carlson R E. 1977. A trophic state index for lakes. Limnol.Oceanogr., 22(2):361-369.
Cyr H, Curtis J M. 1999. Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia, 118(3):306-315.
Da Rosa L M, De Souza Cardoso L, Crossetti L O, Da MottaMarques D. 2017. Spatial and temporal variability of zooplankton-phytoplankton interactions in a large subtropical shallow lake dominated by non-toxic cyanobacteria. Mar. Freshwater Res., 68(2):226-243.
De Senerpont Domis L N, Elser J J, Gsell A S, Huszar V L M, Ibelings B W, Jeppesen E, Kosten S, Mooij W M, Roland F, Sommer U, Van Donk E, Winder M, Lürling M. 2013.Plankton dynamics under different climatic conditions in space and time. Freshwater Biol., 58(3):463-482.
Effler S W, Spada M E, Gelda R K, Peng F, Matthews D A, Kearns C M, Hairston N G Jr. 2015. Daphnia grazing, the clear water phase, and implications of minerogenic particles in Onondaga Lake. Inland Waters, 5(4):317-330.
Elser J J, Hayakawa K, Urabe J. 2001. Nutrient limitation reduces food quality for zooplankton:Daphnia response to seston phosphorus enrichment. Ecology, 82(3):898-903.
Fischer J M, Olson M H, Williamson C E, Everhart J C, Hogan P J, Mack J A, Rose K C, Saros J E, Stone J R, Vinebrooke R D. 2011. Implications of climate change for Daphnia in Alpine lakes:predictions from long-term dynamics, spatial distribution, and a short-term experiment.Hydrobiologia, 676(1):263-277.
Han B P, Liu Z W. 2011. Tropical and Sub-Tropical Reservoir Limnology in China:Theory and Practice. Springer, Dordrecht.
Havens K E, Beaver J R. 2013. Zooplankton to phytoplankton biomass ratios in shallow Florida lakes:an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia, 703(1):177-187.
Hillebrand H, Dürselen C D, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35(2):403-424.
Kalff J. 2002. Limnology:Inland Water Ecosystems. Upper Saddle River Press, Prentice Hall.
Kasprzak P, Lathrop R C, Carpenter S R. 1999. Influence of different sized Daphnia species on chlorophyll concentration and summer phytoplankton community structure in eutrophic Wisconsin lakes. J. Plankton Res., 21(11):2 161-2 174.
Kirk J T O. 2011. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.
Kvam O V, Kleiven O T. 1995. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus.Hydrobiologia, 307(1-3):177-184.
Lin S J, He L J, Huang P S, Han B P. 2005. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton. Ecol. Sci., 24(1):9-11. (in Chinese with English abstract)
Lorenzen C J. 1967. Determination of chlorophyll and pheopigments:spectrophotometric equations. Limnol.Oceanogr., 12(2):343-346.
Marra J. 2002. Approaches to the measurement of plankton production. In:Williams P J L B, Thomas D N, Reynolds C S eds. Phytoplankton Productivity:Carbon Assimilation in Marine and Freshwater Ecosystems. Blackwell Science Ltd, Oxford. p.78-108.
McMeans B C, Koussoroplis A M, Kainz M J. 2015. Effects of seasonal seston and temperature changes on lake zooplankton fatty acids. Limnol. Oceanogr., 60(2):573-583.
Meybeck M, Cauwet G, Dessery S, Somville M, Gouleau D, Billen G. 1988. Nutrients (organic C, P, N, Si) in the eutrophic River Loire (France) and its estuary. Estuar., Coast Shelf Sci., 27(6):595-624.
Muylaert K, Declerck S, Geenens V, Van Wichelen J, Degans H, Vandekerkhove J, Van der Gucht K, Vloemans N, Rommens W, Rejas D, Urrutia R, Sabbe K, Gillis M, Decleer K, De Meester L, Vyverman W. 2003.Zooplankton, phytoplankton and the microbial food web in two turbid and two clearwater shallow lakes in Belgium.Aquat. Ecol., 37(2):137-150.
Persson J, Brett M T, Vrede T, Ravet J L. 2007. Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos, 116(7):1 152-1 163.
Pinel-Alloul B. 1995. Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia, 300-301(1):17-42.
Sarnelle O. 2005. Daphnia as keystone predators:effects on phytoplankton diversity and grazing resistance. J.Plankton Res., 27(12):1 229-1 238.
Taipale S J, Brett M T, Hahn M W, Martin-Creuzburg D, Yeung S, Hiltunen M, Strandberg U, Kankaala P. 2014. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology, 95(2):563-576.
Taipale S J, Kainz M J, Brett M T. 2011. Diet-switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia.Oikos, 120(11):1 674-1 682.
Tirok K, Gaedke U. 2006. Spring weather determines the relative importance of ciliates, rotifers and crustaceans for the initiation of the clear-water phase in a large, deep lake.J. Plankton Res., 28(4):361-373.
Verreth J. 1990. The accuracy of population density estimates of a horizontally distributed zooplankton community in Dutch fish ponds. Hydrobiologia, 203(1-2):53-61.
Wetzel R G. 1995. Death, detritus, and energy flow in aquatic ecosystems. Freshwater Biol., 33(1):83-89.
Wiedenheft W D. 1984. Establishment of Aquatic Baselines in Large Inland Impoundments:Segment 3 Report. US Department of Commerce, Helena. Yu G Z, Huang K, Chen F Y, Gao H, Zhao C M. 2009. Eco-environmental problems with the development on large-scale reservoirs in Xinyang City-using Nanwan reservoir as an example.J. Hydroecol., 2(1):142-146. (in Chinese with English abstract)
Zhang M, Lin Q Q, Xiao L J, Wang S, Qian X, Han B P. 2013.Effect of intensive epilimnetic withdrawal on the phytoplankton in a (sub)tropical deep reservoir. J. Limnol., 72(3):430-439.
Zhang Z S, Huang X F. 1991. Research Methods of Freshwater Plankton. Science Press, Beijing. (in Chinese)
Copyright © Haiyang Xuebao