Cite this paper:
CONG Yuting, WANG Yuan, YUE Jinrong, XING Zhenyu, GAO Xiangnan, CHAI Xiaojie. Expression, purification, and subcellular localization of phospholipase C in Dunaliella salina[J]. HaiyangYuHuZhao, 2019, 37(4): 1363-1371

Expression, purification, and subcellular localization of phospholipase C in Dunaliella salina

CONG Yuting, WANG Yuan, YUE Jinrong, XING Zhenyu, GAO Xiangnan, CHAI Xiaojie
Key Laboratory of Hydrobiology in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
Abstract:
Plants possess effective mechanisms to respond quickly to the external environment. Rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs after a stimulus. The PLC in Dunaliella salina plays important roles in growth and stress responses. However, the molecular basis of PLC action in D. salina remains little understood. To gain insight into the potential biological functions of this enzyme, we cloned a phospholipase C gene from D. salina in a previous study, named DsPLC (GenBank No. KF573428). Here, we present the prokaryotic expression, purification, and characterization of the DsPLC gene. The entire coding region of DsPLC was inserted into an expression vector pET32a, and the DsPLC gene was successfully expressed in Escherichia coli. The DsPLC protein was purified and identified using a polyclonal antibody and western blotting. Expressing DsPLC fused with a green fluorescent protein (GFP) in onion showed that DsPLC-GFP was localized to the intracellular membrane. Quantitative real-time PCR analysis revealed that the relative expression of the DsPLC gene was induced significantly by 3.0-mol/L NaCl at 4 h. Our results support the importance of PLC enzymes in plant defense signaling. This study provides a basis for further functional studies of the DsPLC gene and for additional analysis of the potential roles of PLC enzymes in response to abiotic stress.
Key words:    Dunaliella salina|DsPLC gene|prokaryotic expression|subcellular localization|salt stress   
Received: 2018-07-04   Revised: 2018-10-29
Tools
PDF (1019 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by CONG Yuting
Articles by WANG Yuan
Articles by YUE Jinrong
Articles by XING Zhenyu
Articles by GAO Xiangnan
Articles by CHAI Xiaojie
References:
Abd-El-Haliem A M, Vossen J H, van Zeijl A, Dezhsetan S, Testerink C, Seidl M F, Beck M, Strutt J, Robatzek S, Joosten M H A J. 2016. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1861(9):1 365-1 378, https://doi.org/10.1016/j.bbalip.2016.01.017.
Arroussi HE, Benhima R, Elbaouchi A, Sijilmassi B, Mernissi NE, Aafsar A, Meftah-Kadmiri I, Bendaou N, Smouni. A. 2018. Dunaliella salina exopolysaccharides:a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology, 30(5):2929-2941. https://doi.org/10.1007/s10811-017-1382-1.
Arz M C, Grambow H J. 1994. Polyphosphoinositide phospholipase C and evidence for inositol-phosphatehydrolysing activities in the plasma-membrane fraction from light-grown wheat (Triticum aestivum L.) leaves.Planta, 195(1):57-62, https://doi.org/10.1007/BF00206292.
Belhaj D, Athmouni K, Frikha D, Kallel M, El Feki A, Maalej S, Zhou J L, Ayadi H. 2017. Biochemical and physiological responses of halophilic nanophytoplankton (Dunaliella salina) from exposure to xeno-estrogen 17α-ethinylestradiol. Environmental Science and Pollution Research, 24(8):7 392-7 402, https://doi.org/10.1007/s11356-017-8415-9.
Cerminati S, Eberhardt F, Elena C E, Peirú S, Castelli M E, Menzella H G. 2017. Development of a highly efficient oil degumming process using a novel phosphatidylinositolspecific phospholipase C enzyme. Applied Microbiology and Biotechnology, 101(11):4 471-4 479, https://doi.org/10.1007/s00253-017-8201-0.
Chen H, Lao Y M, Jiang J G. 2011. Effects of salinities on the gene expression of a (NAD+)-dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina. Science of the Total Environment, 409(7):1 291-1 297, https://doi.org/10.1016/j.scitotenv.2010.12.038.
Chen X D, Tian D G, Kong X X, Chen Q, Abd_Allah E F, Hu X Y, Jia A Q. 2016. The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii.Planta, 244(3):651-669, https://doi.org/10.1007/s00425-016-2528-0.
Cui L Q, Chai Y R, Li J, Liu H T, Zhang L, Xue L X. 2010.Identification of a glucose-6-phosphate isomerase involved in adaptation to salt stress of Dunaliella salina.Journal of Applied Phycology, 22(5):563-568, https://doi.org/10.1007/s10811-009-9494-x.
Einspahr K J, Peeler T C, Thompson G A. 1989.Phosphatidylinositol 4, 5-bisphosphate phospholipase C and phosphomonoesterase in Dunaliella salina membranes. Plant Physiology, 90(3):1 115-1 120, https://doi.org/10.1104/pp.90.3.1115.
Fang L, Qi S Y, Xu Z Y, Wang W, He J, Chen X, Liu J H. 2017.De novo transcriptomic profiling of Dunaliella salina reveals concordant flows of glycerol metabolic pathways upon reciprocal salinity changes. Algal Research, 23:135-149, https://doi.org/10.1016/j.algal.2017.01.017.
Gong W F, Zhao L N, Hu B, Chen X W, Zhang F, Zhu Z M, Chen D F. 2014. Identifying novel salt-tolerant genes from Dunaliella salina using a Haematococcus pluvialis expression system. Plant Cell, Tissue and Organ Culture, 117(1):113-124, https://doi.org/10.1007/s11240-014-0425-4.
Ha K S, Thompson G A. 1991. Diacylglycerol metabolism in the green alga Dunaliella salina under osmotic stress:possible role of diacylglycerols in phospholipase C-mediated signal transduction. Plant Physiology, 97(3):921-927, https://doi.org/10.1104/pp.97.3.921.
Han D M, Chai X J, Wang Y Y, Liu S C, Yue W J. 2014.Cloning and expression analysis of DsPLC under salt stress from Dunaliella salina. Journal of Nuclear Agricultural Sciences, 28(10):1 773-1 780, https://doi.org/10.11869/j.issn.100-8551.2014.10.1773. (in Chinese with English abstract)
He Q H, Qiao D R, Bai L H, Zhang Q L, Yang W G, Li Q, Cao Y. 2007. Cloning and characterization of a plastidic glycerol 3-phosphate dehydrogenase cDNA from Dunaliella salina. Journal of Plant Physiology, 164(2):214-220, https://doi.org/10.1016/j.jplph.2006.04.004.
Hirayama T, Ohto C, Mizoguchi T, Shinozaki K. 1995. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 92(9):3 903-3 907, https://doi.org/10.1073/pnas.92.9.3903.
Hong Y Y, Zhao J, Guo L, Kim S C, Deng X J, Wang G L, Zhang G Y, Li M Y, Wang X M. 2016. Plant phospholipases D and C and their diverse functions in stress responses.Progress in Lipid Research, 62:55-74, https://doi.org/10.1016/j.plipres.2016.01.002.
Jia Y L, Xue L X, Liu H T, Li J. 2009. Characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)gene from the halotolerant alga Dunaliella salina and inhibition of its expression by RNAi. Current Microbiology, 58(5):426-431, https://doi.org/10.1007/s00284-008-9333-3.
Kanehara K, Yu C Y, Cho Y, Cheong W F, Torta F, Shui G H, Wenk M R, Nakamura Y. 2015. Arabidopsis AtPLC2 Is a primary phosphoinositide-specific phospholipase C in phosphoinositide metabolism and the endoplasmic reticulum stress response. PLoS Genetics, 11(9):e1005511, https://doi.org/10.1371/journal.pgen.1005511.
Katz A, Avron M. 1985. Determination of intracellular osmotic volume and sodium concentration in dunaliella. Plant Physiology, 78(4):817-820, https://doi.org/10.1104/pp.78.4.817.
Katz A, Waridel P, Shevchenko A, Pick U. 2007. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis.Molecular & Cellular Proteomics, 6(9):1 459-1 472, https://doi.org/10.1074/mcp.M700002-MCP200.
Kim Y J, Kim J E, Lee J H, Lee M H, Jung H W, Bahk Y Y, Hwang B K, Hwang I, Kim W T. 2004. The Vr-PLC3 gene encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean(Vigna radiata L.). FEBS Letters, 556(1-3):127-136, https://doi.org/10.1016/S0014-5793(03)01388-7.
Kocourková D, Krčková Z, Pejchar P, Veselková Š, Valentová O, Wimalasekera R, Scherer G F E, Martinec J. 2011. The phosphatidylcholine-hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress.Journal of Experimental Botany, 62(11):3 753-3 763, https://doi.org/10.1093/jxb/err039.
Lei G P, Qiao D R, Bai L H, Xu H, Cao Y. 2008. Isolation and characterization of a mitogen-activated protein kinase gene in the halotolerant alga Dunaliella salina. Journal of Applied Phycology, 20(1):13-17, https://doi.org/10.1007/s10811-007-9175-6.
Li L, Wang F W, Yan P W, Jing W, Zhang C X, Kudla J, Zhang W H. 2017. A phosphoinositide-specific phospholipase C pathway elicits stress-induced Ca2+ signals and confers salt tolerance to rice. New Phytologist, 214(3):1 172-1 187, https://doi.org/10.1111/nph.14426.
Liska A J, Shevchenko A, Pick U, Katz A. 2004. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homologybased proteomics. Plant Physiology, 136(1):2 806-2 817, https://doi.org/10.1104/pp.104.039438.
Liu J L, Zhang D X, Hong L. 2015. Isolation, characterization and functional annotation of the salt tolerance genes through screening the high-quality cDNA library of the halophytic green alga Dunaliella salina (Chlorophyta).Annals of Microbiology, 65(3):1 293-1 302, https://doi.org/10.1007/s13213-014-0967-z.
Lv H X, Cui X G, Tan Z L, Jia S R. 2017. Analysis of metabolic responses of Dunaliella salina to phosphorus deprivation.Journal of Applied Phycology, 29(3):1 251-1 260, https://doi.org/10.1007/s10811-017-1059-9.
Oren A. 2005. A hundred years of Dunaliella research:1905-2005. Saline Systems, 1:2, https://doi.org/10.1186/1746-1448-1-2.
Peters C, Kim S C, Devaiah S, Li M Y, Wang X M. 2014. Nonspecific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant, Cell & Environment, 37(9):2 002-2 013, https://doi.org/10.1111/pce.12334.
Punta M, Coggill P C, Eberhardt R Y, Mistry J, Tate J, Boursnell C, Pang N Z, Forslund K, Ceric G, Clements J, Clements A, Clements L, Clements E L L, Clements S R, Clements A, Clements R D. 2012. The Pfam protein families database. Nucleic Acids Research, 40(D1):D290-D301, https://doi.org/10.1093/nar/gkr1065.
Ramos A A, Polle J, Tran D, Cushman J C, Jin E S, Varela J C. 2011. The unicellular green alga Dunaliella salina Teod.as a model for abiotic stress tolerance:genetic advances and future perspectives. Algae, 26(1):3-20, https://doi.org/10.4490/algae.2011.26.1.003.
Shi J R, Gonzales R A, Bhattacharyya M K. 1995.Characterization of a plasma membrane-associated phosphoinositide-specific phospholipase C from soybean.The Plant Journal, 8(3):381-390, https://doi.org/10.1046/j.1365-313X.1995.08030381.x.
Singh A, Bhatnagar N, Pandey A, Pandey G K. 2015. Plant phospholipase C family:regulation and functional role in lipid signaling. Cell Calcium, 58(2):139-146, https://doi.org/10.1016/j.ceca.2015.04.003.
Tammam AA, Fakhry EM, El-Sheekh M. 2011. Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta. African Journal of Biotechnology. 10(19):3 795-3 808. http://www.ajol.info/index.php/ajb/article/view/93533.
Tripathy M K, Tyagi W, Goswami M, Kaul T, Singla-Pareek S L, Deswal R, Reddy M K, Sopory S K. 2012.Characterization and functional validation of tobacco PLC delta for abiotic stress tolerance. Plant Molecular Biology Reporter, 30(2):488-497, https://doi.org/10.1007/s11105-011-0360-z.
Xie H, Xu P R, Jia Y L, Li J, Lu Y M, Xue L X. 2007. Cloning and heterologous expression of nitrate reductase genes from Dunaliella salina. Journal of Applied Phycology, 19(5):497-504, https://doi.org/10.1007/s10811-007-9162-y.
Xu X J, Cao Z X, Liu G Q, Bhattacharrya M K, Ren D T. 2004.Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol-specific phospholipase C in Arabidopsis thaliana. Chinese Science Bulletin, 49(6):567-573, https://doi.org/10.1360/03wc0514.
Zhai S M, Sui Z H, Yang A F, Zhang J R. 2005. Characterization of a novel phosphoinositide-specific phospholipase C from Zea mays and its expression in Escherichia coli.Biotechnology Letters, 27(11):799-804, https://doi.org/10.1007/s10529-005-5802-y.
Zhang J W, Zhang Z B, Zhu D, Guan Y, Shi D Y, Chen Y J, Li R F, Wang H Z, Wei J H. 2015. Expression and initial characterization of a phosphoinositide-specific phospholipase c from Populus tomentosa. Journal of Plant Biochemistry and Biotechnology, 24(3):338-346, https://doi.org/10.1007/s13562-014-0279-1.
Zhang X W, Cao S N, Li Y X, Mou S L, Xu D, Fan X, Ye N H. 2012. expression of three putative early light-induced genes under different stress conditions in the green alga Ulva linza. Plant Molecular Biology Reporter, 30(4):940-948, https://doi.org/10.1007/s11105-011-0411-5.
Zhao L N, Gong W F, Chen X W, Chen D F. 2013.Characterization of genes and enzymes in Dunaliella salina involved in glycerol metabolism in response to salt changes. Phycological Research, 61(1):37-45, https://doi.org/10.1111/j.1440-1835.2012.00669.x.