Cite this paper:
LIU Song, LI Bing, CHEN Xiaolin, QIN Yukun, LI Pengcheng. Effect of polysaccharide from Enteromorpha prolifera on maize seedlings under NaCl stress[J]. HaiyangYuHuZhao, 2019, 37(4): 1372-1381

Effect of polysaccharide from Enteromorpha prolifera on maize seedlings under NaCl stress

LIU Song1,2,3, LI Bing4, CHEN Xiaolin1,2,3, QIN Yukun1,2,3, LI Pengcheng1,2,3
1 CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China;
4 Marine Science and Engineering College, Qingdao Agriculture University, Qingdao 266000, China
Abstract:
In this study, a polysaccharide from Enteromorpha prolifera (EP) was extracted and its effect on maize seedlings under NaCl stress was investigated. Firstly, the components and structure of the EP were determined. We found that EP is a sulfated polysaccharide of high-molecular weight (Mw, 1 840 KDa) heteropolysaccharides and the main monosaccharide is rhamnose. The polysaccharide was applied to explore its effect on the growth of maize seedlings and its defense response under a salt stress. The results show that EP could promote the growth of maize seedlings under the salt stress. In addition, EP was shown able to significantly regulate membrane permeability and adjustment of osmotic substances such as soluble protein, soluble sugar, and proline, antioxidant enzymes containing superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase. Therefore, EP is an effective salt-resistant substance for the growth of maize seedlings under NaCl stress.
Key words:    polysaccharides|Enteromorpha prolifera|maize seedling|NaCl stress   
Received: 2018-05-18   Revised: 2018-08-22
Tools
PDF (742 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LIU Song
Articles by LI Bing
Articles by CHEN Xiaolin
Articles by QIN Yukun
Articles by LI Pengcheng
References:
Abdel-Basset R. 1998. Calcium channels and membrane disorders induced by drought stress in Vicia faba plants supplemented with calcium. Acta Physiol. Plant., 20(2):149-153.
Bates L S. 1973. Rapid determination of free proline for waterstress studies. Plant Soil, 39(1):205-207.
Battacharyya D, Babgohari M Z, Rathor P, Prithiviraj B. 2015.Seaweed extracts as biostimulants in horticulture. Sci.Hortic., 196:39-48.
Beauchamp C, Fridovich I. 1971. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 44(1):276-287.
Bi F, Iqbal S, Arman M, Ali A, Hassan M U. 2011. Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. J. Saudi Chem. Soc., 15(3):269-273.
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2):248-254.
Cho M, Yang C, Kim Y S, You S G. 2010. Molecular characterization and biological activities of watersoluble sulfated polysaccharides from Enteromorpha prolifera.Food Sci. Biotechnol., 19(2):525-533.
DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28(3):350-356.
Dzung N A, Khanh V T P, Dzung T T. 2011. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr. Polym., 84(2):751-755.
Farhangi-Abriz S, Torabian S. 2017. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotox. Environ. Saf., 137:64-70.
Foyer C H, Noctor G. 2005. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ., 28(8):1 056-1 071.
Glosek-Sobieraj M, Cwalina-Ambroziak B, Hamouz K. 2018.The effect of growth regulators and a biostimulator on the health status, yield and yield components of potatoes(Solanum tuberosum L.). Gesunde Pflanz., 70(1):1-11.
Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci E G, Cicek N.2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol., 164(6):728-736.
Heath R L, Packer L. 1968. Photoperoxidation in isolated chloroplasts:I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125(1):189-198.
Jaulneau V, Lafitte C, Jacquet C, Fournier S, Salamagne S, Briand X, Esquerré-Tugayé M T, Dumas B. 2010. Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. J. Biomed. Biotechnol., 2010:525 291, https://doi.org/10.1155/2010/525291.
Jiao L L, Jiang P, Zhang L P, Wu M J. 2010. Antitumor and immunomodulating activity of polysaccharides from Enteromorpha intestinalis. Biotechnol. Bioproc. Eng., 15:421-428.
Kawai Y, Seno N, Anno K. 1969. A modified method for chondrosulfatase assay. Anal. Biochem., 32(2):314-321.
Khatkar D, Kuhad M S. 2000. Short-term salinity induced changes in two wheat cultivars at different growth stages.Biol. Plant., 43(4):629-632.
Klarzynski O, Descamps V, Plesse B, Yvin J C, Kloareg B, Fritig B. 2003. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol. Plant Microbe Int., 16(2):115-122.
Li B, Liu S, Xing R E, Li K C, Li R F, Qin Y K, Wang X Q, Wei Z H, Li P C. 2013. Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities. Carbohydr. Polym., 92(2):1 991-1 996.
Liu L P, Long X H, Shao H B, Liu Z P, Tao Y, Zhou Q S, Zong J Q. 2015. Ameliorants improve saline-alkaline soils on a large scale in northern Jiangsu Province, China. Ecol.Eng., 81:328-334.
Lü H T, Gao Y J, Shan H, Lin Y T. 2014. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera. Carbohydr.Polym., 107:98-102.
Lu Z Q, Liu D L, Liu S K. 2007. Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep., 26(10):1 909-1 917.
Luan L Q, Nagasawa N, Ha V T T, Hien N Q, Nakanishi T M. 2009. Enhancement of plant growth stimulation activity of irradiated alginate by fractionation. Radiat. Phys.Chem., 78(9):796-799.
Mejía-Espejel L, Robledo-Paz A, Lozoya-Gloria E, PeñaValdivia C B, Carrillo-Salazar J A. 2018. Elicitors on steviosides production in Stevia rebaudiana Bertoni calli.Sci. Hortic., 242:95-102.
Mekhedov S L, Kende H. 1996. Submergence enhances expression of a gene encoding 1-aminocyclopropane-1-carboxylate oxidase in deepwater rice. Plant Cell Physiol., 37(4):531-537.
Meloni D A, Oliva M A, Martinez C A, Cambraia J. 2003.Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot., 49(1):69-76.
Michalak I, Dmytryk A, Śmieszek A, Marycz K. 2017.Chemical characterization of Enteromorpha prolifera extract obtained by enzyme-assisted extraction and its influence on the metabolic activity of Caco-2. Int. J. Mol.Sci., 18(3):479.
Michalak I, Górka B, Wieczorek P P, Rój E, Lipok J, Łęska B, Messyasz B, Wilk R, Schroeder G, Dobrzyńska-Inger A, Chojnacka K. 2016. Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. Eur. J. Phycol., 51(3):243-252.
Michalak I, Tuhy Ł, Chojnacka K. 2015. Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chem., 13(1):1 183-1 195.
Mittal S, Kumari N, Sharma V. 2012. Differential response of salt stress on Brassica juncea:photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol. Biochem., 54:17-26.
Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7(9):405-410.
Munns R, Tester M. 2008. Mechanisms of salinity tolerance.Annu. Rev. Plant Biol., 59:651-681.
Pacholczak A, Nowakowska K, Mika N, Borkowska M. 2016.The effect of the biostimulator Goteo on the rooting of ninebark stem cuttings. Folia Hortic., 28(2):109-116.
Rodriguez H G, Roberts J K M, Jordan W R, Drew M C. 1997.Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol., 113(3):881-893.
Ruiz-Lozano J M, Porcel R, Azcón C, Aroca R. 2012.Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants:new challenges in physiological and molecular studies. J. Exp.Bot., 63(11):4 033-4 044.
Sánchez F J, Manzanares M, De Andres E F, Tenorio J L, Ayerbe L. 1998. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Res., 59(3):225-235.
Seckin B, Sekmen A H, Türkan I. 2009. An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J. Plant Growth Regul., 28(1):12-20.
Sharp J K, Valent B, Albersheim P. 1984. Purification and partial characterization of a β-glucan fragment that elicits phytoalexin accumulation in soybean. J. Biol. Chem., 259(18):11 312-11 320.
Song L, Chen X L, Liu X D, Zhang F B, Hu L F, Yue Y, Li K C, Li P C. 2016. Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides. Mar. Drugs, 14(1):4.
Sudhakar C, Lakshmi A, Giridarakumar S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci., 161(3):613-619.
Szabados L, Savouré A. 2010. Proline:a multifunctional amino acid. Trends Plant Sci., 15(2):89-97.
Volkmar K M, Hu Y, Steppuhn H. 1998. Physiological responses of plants to salinity:a review. Can. J. Plant Sci., 78(1):19-27.
Wang Z L, Pote J, Huang B R. 2003. Responses of cytokinins, antioxidant enzymes, and lipid peroxidation in shoots of creeping bentgrass to high root-zone temperatures. J. Am.Soc.. Hortic. Sci., 128:648-655.
Xu D L, Huang X C, Ou C R, Xue C H, Yang W G, Wang H H. 2005. In vitro study on polysaccharides in Enteromorpha with non-specific immunity. Food Sci., 26:232-235.
Xu J, Xu L L, Zhou Q W, Hao S X, Zhou T, Xie H J. 2015.Isolation, purification, and antioxidant activities of degraded polysaccharides from Enteromorpha prolifera.Int. J. Biol. Macromol., 81:1 026-1 030.
Yang X L, Guo J Y. 2010. Effect of sodium alginate on H. annuus L. seedling to salt-tolerance. Northern Hortic., (23):37-39. (in Chinese with English abstract)
Yang X L, Guo Y D. 2011. Effect of sodium alginate on Raphanus sativus L. seedlings in adaptation to salttolerance. Chin. Veget., 1(2):81-84. (in Chinese with English abstract)
Zhang J J, Zhang Q B, Wang J, Shi X L, Zhang Z S. 2009.Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC. Chin. J. Oceanol.Limnol., 27(3):578-582.
Zhang X Q, Li K C, Liu S, Zou P, Xing R E, Yu H H, Chen X L, Qin Y K, Li P C. 2017a. Relationship between the degree of polymerization of chitooligomers and their activity affecting the growth of wheat seedlings under salt stress. J. Agric. Food Chem., 65(2):501-509.
Zhang X Q, Li K C, Xing R E, Liu S, Chen X L, Yang H Y, Li P C. 2017b. miRNA and mRNA expression profiles reveal insight into chitosan-mediated regulation of plant growth.J. Agric. Food Chem., 66(15):3 810-3 822.
Zhou H P, Jiang X T, Wang S R, Chen Q H. 1995. Effect of polysaccharide from Enteromorpha prolifera on lipemia, SOD activity and LPO content. Chin. J. Biochem. Mol.Biol., 11(2):161-165. (in Chinese with English abstract)
Zhu J K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol., 124(3):941-948.
Zou P, Lu X L, Jing C L, Yuan Y, Lu Y, Zhang C S, Meng L, Zhao H T, Li Y Q. 2018. Low-molecular-weight polysaccharides from Pyropia yezoensis enhance tolerance of wheat seedlings(Triticum aestivum L.) to salt stress. Front. Plant Sci., 9:427, https://doi.org//10.3389/fpls.2018.00427.