Cite this paper:
WANG Jinyan, LI Bin, WANG Yingeng, LIAO Meijie, RONG Xiaojun, ZHANG Zheng. Influences of immersion bathing in Bacillus velezensis DY-6 on growth performance, non-specific immune enzyme activities and gut microbiota of Apostichopus japonicus[J]. HaiyangYuHuZhao, 2019, 37(4): 1449-1459

Influences of immersion bathing in Bacillus velezensis DY-6 on growth performance, non-specific immune enzyme activities and gut microbiota of Apostichopus japonicus

WANG Jinyan1,2, LI Bin1, WANG Yingeng1, LIAO Meijie1, RONG Xiaojun1, ZHANG Zheng1
1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Qingdao National Laboratory for Marine Science and Technology, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, China;
2 Shanghai Ocean University, Shanghai 201306, China
In this study, the influences of immersion bathing in different concentrations of Bacillus velezensis DY-6 on the body weight gain rate and non-specific immune enzyme activities of the coelom fluid of sea cucumber (Apostichopus japonicus) were determined in order to obtain the optimum bacterial concentration. The gut microbiota change in A. japonicus was then analyzed through high-throughput sequencing during the immersion bathing in B. velezensis DY-6 at the optimum concentration for 49 d. The results illustrate that the body weight growth rate of all bathing groups was higher than that of the control. The highest growth rate (25.3%) was achieved when the bacterial concentration was 1×103 CFU/mL. The activities of non-specific immune enzymes (ACP, AKP, SOD and LZM) of all bathing groups increased, and the activities of the enzymes of groups bathed with the bacterium at 1×103 and 1×104 CFU/mL reached the highest on day 21 and day 28. Taking the growth rate and economic cost into consideration, the optimum concentration of B. velezensis DY-6 was 1×103 CFU/mL. The influences of immersion bathing in B. velezensis DY-6 at 1×103 CFU/mL on the gut microbiota of A. japonicus were then evaluated through 16S rDNA sequencing analysis. Results showed that the gut microbiota changed with the addition of B. velezensis DY-6, and the richness and diversity of the gut microbiota peaked twice on day 14 and day 21, respectively. In association with the non-specific immune enzyme activities and if day 28 was selected as the dividing point, the community structure of the gut microbiota could be obviously divided into two types. The correlation analysis revealed that the non-specific immune enzyme activities were correlated significantly to some gut bacteria (in the phyla Firmicutes, Proteobacteria, and Bacteroidetes) after immersion bathing in B. velezensis DY-6. Our findings will provide the theoretical foundation for probiotic application in sea cucumber farming.
Key words:    Apostichopus japonicus|Bacillus velezensis|non-specific immune enzyme|gut microbiota|correlation   
Received: 2018-05-08   Revised: 2018-07-03
PDF (617 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by WANG Jinyan
Articles by LI Bin
Articles by WANG Yingeng
Articles by LIAO Meijie
Articles by RONG Xiaojun
Articles by ZHANG Zheng
Aguilar-Macías O L, Ojeda-Ramírez J J, Campa-Córdova A I, Saucedo P E. 2010. Evaluation of natural and commercial probiotics for improving growth and survival of the pearl oyster, Pinctada mazatlanica, during late hatchery and early field culturing. Journal of the World Aquaculture Society, 41(3):447-454.
Balcázar J L, Rojas-Luna T. 2007. Inhibitory activity of probiotic Bacillus subtilis UTM 126 against Vibrio species confers protection against Vibriosis in juvenile shrimp(Litopenaeus vannamei). Current Microbiology, 55(5):409-412.
Becker P, Gillan D, Lanterbecq D, Jangoux M, Rasolofonirina R, Rakotovao J, Eeckhaut I. 2004. The skin ulceration disease in cultivated juveniles of Holothuria scabra(Holothuroidea, Echinodermata). Aquaculture, 242(1-4):13-30.
Böttcher M F, Nordin E K, Sandin A, Midtvedt T, Björkstén B. 2000. Microflora-associated characteristics in faeces from allergic and nonallergic infants. Clinical & Experimental Allergy, 30(11):1 591-1 596.
Carding S, Verbeke K, Vipond D T, Corfe B M, Owen L J. 2015. Dysbiosis of the gut microbiota in disease.Microbial Ecology in Health and Disease, 26(1):26191.
Carvalho F A, Barnich N, Sivignon A. Darcha C, Chan C H, Stanners C P, Darfeuille-Michaud A. 2009. Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. Journal of Experimental Medicine, 206(10):2 179-2 189.
Deng H, He C B, Zhou Z C, Liu C, Tan K F, Wang N B, Jiang B, Gao X G, Liu W D. 2009. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture, 287(1-2):18-27.
Fang C, Ma M Y, Ji H, Ren T J, Mims S D. 2015. Alterations of digestive enzyme activities, intestinal morphology and microbiota in juvenile paddlefish, Polyodon spathula, fed dietary probiotics. Fish Physiology and Biochemistry, 41(1):91-105.
Fisheries and Fisheries Administration Bureau of the Ministry of Agriculture. 2017. China Fishery Statistical YearBook.China Agriculture Press, Beijing, China, p.23-50. (in Chinese)
Forchielli M L, Walker W A. 2005. The role of gut-associated lymphoid tissues and mucosal defence. British Journal of Nutrition, 93(S1):S41-S48.
Furusawa Y, Obata Y, Fukuda S, Endo T A, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda N N, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke J M, Topping D L, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480):446-450.
Garrett W S, Gallini C A, Yatsunenko T, Michaud M, DuBois A, Delaney M L, Punit S, Karlsson M, Bry L, Glickman J N, Gordon J I, Onderdonk A B, Glimcher L H. 2010.Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis.Cell Host & Microbe, 8(3):292-300.
Ghosh K, Sen S K, Ray A K. 2003. Supplementation of an isolated fish gut bacterium, Bacillus circulans, in formulated diets for Rohu, Labeo rohita, fingerlings. The Israeli Journal of Aquaculture-Bamidgeh, 55(1):13-21.
Gómez G D, Balcázar J L. 2008. A review on the interactions between gut microbiota and innate immunity of fish.FEMS Immunology & Medical Microbiology, 52(2):145-154.
Gullian M, Thompson F, Rodriguez J. 2004. Selection of probiotic bacteria and study of their immunostimulatory effect in Penaeus vannamei. Aquaculture, 233(1-4):1-14.
Hai N V. 2015. The use of probiotics in aquaculture. Journal of Applied Microbiology, 119(4):917-935.
Huys L, Dhert P, Robles R, Ollevier F, Sorgeloos P, Swings J. 2001. Search for beneficial bacterial strains for turbot(Scophthalmus maximus L.) larviculture. Aquaculture, 193(1-2):25-37.
Irianto A, Austin B. 2002. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss(Walbaum). Journal of Fish Diseases, 25(6):333-342.
Jiang Y, Zhang Z, Wang Y G, Jing Y Y, Liao M J, Rong X J, Li B, Chen G P, Zhang H S. 2018. Effects of probiotic on microfloral structure of live feed used in larval breeding of turbot Scophthalmus maximus. Journal of Oceanology and Limnology, 36(3):1 002-1 012.
Karim M, Zhao W J, Rowley D, Nelson D, Gomez-Chiarri M. 2016. Probiotic strains for shellfish aquaculture:protection of eastern oyster, Crassostrea virginica, larvae and juveniles against bacterial challenge. Journal of Shellfish Research, 32(2):401-408.
Keen P L, Montforts M H M M. 2011. Antimicrobial Resistance in the Environment. John Wiley & Sons, Inc., Hoboken, NJ. p.325-335.
Kozasa M. 1986. Toyocerin (Bacillus toyoi) as growth promotor for animal feeding. Microbiologie Aliments Nutrition, 4(2):121-135.
Li F H, Gao F, Tan J, Fan C J, Sun H L, Yan J P, Chen S Q, Wang X J. 2016. Characterization and identification of enzyme-producing microflora isolated from the gut of sea cucumber Apostichopus japonicus. Chinese Journal of Oceanology and Limnology, 34(1):153-162.
Liu H L, Huang X W, Li C L, Li R W, Luo Y P. 2009. Effect of different concentrations of Bacillus substilis on water quality and disease resistence of Tilapia fry. Journal of Aquaculture, 30(10):5-9. (in Chinese with English abstract)
Liu X Y, Zhang Y, Qi Q, Zhao M J, Mai L K, Sun D J. 2011.Effects of Bacillus subtilis on growth, digestive enzyme activity, and non-specific immunity in hybrid sturgeon(Acipenser baeri ♂×Acipenser schrenkii ♀) juveniles.Journal of Fishery Sciences of China, 18(6):1 315-1 320.(in Chinese with English abstract)
Luzhetskyy A, Pelzer S, Bechthold A. 2007. The future of natural products as a source of new antibiotics. Current Opinion in Investigational Drugs, 8(8):608-613.
Ma Y X, Liu Z M, Yang Z P, Bao P Y, Zhang C Y, Ding J F. 2014. Effects of Hanseniaspora opuntiae C21 on the growth and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicus. Chinese Journal of Oceanology and Limnology, 32(4):743-748.
Miranda C D, Zemelman R. 2001. Antibiotic resistant bacteria in fish from the Concepción Bay, Chile. Marine Pollution Bulletin, 42(11):1 096-1 102.
Moriarty D J W. 1997. The role of microorganisms in aquaculture ponds. Aquaculture, 151(1-4):333-349.
Nair A G H, Donio M T B S, Viji V R T, Michaelbabu M, Citarasu T. 2011. Isolation from coconut retting effluent of Bacillus cereus TC-2 antagonistic to pathogenic Vibrios.Annals of Microbiology, 61(3):631-637.
Panigrahi P, Parida S, Nanda N C, Satpathy R, Pradhan L, Chandel D S, Baccaglini L, Mohapatra A, Mohapatra S S, Misra P R, Chaudhry R, Chen H H, Johnson J A, Morris J G, Paneth N, Gewolb Ira H. 2017. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature, 548(7668):407-412.
Pflumm M. 2011. Persistence may pay off for antibiotics innovators. Nature Medicine, 17(6):652.
Purcella S W, Hairb C A, Mills D J. 2012. Sea cucumber culture, farming and sea ranching in the tropics:progress, problems and opportunities. Aquaculture, 368-369:68-81.
Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P. 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium(Bacillus S11). Aquaculture, 191(4):271-288.
Ringø E, Olsen R E, Gifstad T Ø, Dalmo R A, Amlund H, Hemre G I, Bakke A M. 2010. Prebiotics in aquaculture:a review. Aquaculture Nutrition, 16(2):117-136.
Salinas I, Cuesta A, Esteban M Á, Meseguer J. 2005. Dietary administration of Lactobacillus delbrüeckii and Bacillus subtilis, single or combined, on gilthead seabream cellular innate immune responses. Fish & Shellfish Immunology, 19(1):67-77.
Shiri Harzevili A R, Van D H, Defoort T, Dhert P, Sorgeloos P, Swings J. 1997. The influence of a selected bacterial strain Vibrio anguillarum TR 27 on the growth rate of rotifers in different culture conditions. Aquaculture International, 5(2):183-188. Smith P M, Howitt M R, Panikov N, Michaud M, Gallini C A, Bohlooly-Y M, Glickman J N, Garrett W S. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(6145):569-573.
Sui D P. 2003. The Research of Effects of Microecologics on the Growth and Non-special Immunity Factors of Penaeus vannamei Boone. Ocean University of China, Qingdao, China. 78p. (in Chinese with English abstract)
Sun Y X, Jin L J, Wang T T, Xue G, Li X Y, You J S, Li S Y, Xu Y P. 2008. Polysaccharides from Astragalus membranaceus promote phagocytosis and superoxide anion (O2-) production by coelomocytes from sea cucumber Apostichopus japonicus in vitro. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 147(3):293-298.
Suzer C, Çoban D, Kamaci H O, Saka Ş, Firat K, Otgucuoğlu Ö, Küçüksari H. 2008. Lactobacillus spp. Bacteria as probiotics in gilthead sea bream (Sparus aurata, L.)larvae:effects on growth performance and digestive enzyme activities. Aquaculture, 280(1-4):140-145.
Tuohy K M, Probert H M, Smejkal C W, Gibson G R. 2003.Using probiotics and prebiotics to improve gut health.Drug Discovery Today, 8(15):692-700.
Vael C, Nelen V, Verhulst S L, Goossens H, Desager K N. 2008. Early intestinal Bacteroides fragilis colonisation and development of asthma. BMC Pulmonary Medicine, 8(1):19.
Van D B AE. 1997. Antimicrobial resistance-relation to human and animal exposure to antibiotics. Journal of Antimicrobial Chemotherapy, 40(3):453-461.
Wang J Y, Li B, Wang Y G, Liao M J, Rong X J, Zhang Z, Niu Y Y, Ning L G. 2018. Screening and characteristic analysis of Bacillus velezensis from sea cucumber (Apostichopus japonicus) ponds. Journal of Fishery Sciences of China, 25(3):567-575. (in Chinese with English abstract)
Wang Y G, Lee K L, Najiah M, Shariff M, Hassan M D. 2000.A new bacterial white spot syndrome (BWSS) in cultured tiger shrimp Penaeus monodon and its comparison with white spot syndrome (WSS) caused by virus. Diseases of Aquatic Organisms, 41(1):9-18.
Zhao L, Li L X, Chen X F, Zuo X L, Li Y Q. 2017. Effect of Bacillus subtilis gavage on the intestinal microbiota of mice. Journal of Shandong University (Health Science), 55(10):28-35. (in Chinese with English abstract)
Zhao Y C, Zhang W B, Xu W, Mai K S, Zhang Y J, Liufu Z G. 2012. Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish & Shellfish Immunology, 32(5):750-755.
Zhou Z G, Ding Z K, Huiyuan L V. 2007. Effects of dietary short-chain fructooligosaccharides on intestinal microflora, survival, and growth performance of juvenile white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 38(2):296-301.
Ziaei-Nejad S, Rezaei M H, Takami G A, Lovett D L, Mirvaghefi A R, Shakouri M. 2006. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252(2-4):516-524.