Cite this paper:
WANG Xin'an, MA Aijun, HUANG Zhihui, SUN Zhibin, CUI Wenxiao, QU Jiangbo, YU Hong. Estimation of genetic parameters for upper thermal tolerances and growth-related traits in turbot Scophthalmus maximus[J]. HaiyangYuHuZhao, 2019, 37(5): 1736-1745

Estimation of genetic parameters for upper thermal tolerances and growth-related traits in turbot Scophthalmus maximus

WANG Xin'an1,2, MA Aijun1,2, HUANG Zhihui1,2, SUN Zhibin1,2, CUI Wenxiao1,2, QU Jiangbo3, YU Hong1,2
1 Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding;Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology;Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 Yantai Tianyuan Aquatic Limited Corporation, Yantai 264006, China
Abstract:
An abnormally high temperature produces a stress response in turbot causing large economic losses in the turbot aquaculture industry of China. A genetic improvement of the upper thermal tolerance (UTT) of turbot could allow cultured fish to adapt. A genetic evaluation of UTT is required for determining the practicability of including this trait into a breeding program. In this study, data were recorded from a temperature tolerance test conducted on 3 200 individual turbots from 32 full-sib groups. A cross-sectional linear model and a cross-sectional threshold probit model were used to analyze the test-period survival and a cross-sectional threshold logit model was used to analyze the test-day survival. In addition, phenotypic and genetic correlations between body weight and survival data were estimated. The estimated heritability values obtained from the cross-sectional linear model (CSL), the cross-sectional threshold (probit) model (THRp), and the cross-sectional threshold (logit) model (THRl) were 0.247 9±0.108 3, 0.288 3±0.161 2, and 0.106 9±0.045 2, respectively. The correlation coefficients among the full-sib family estimated breeding values (EBVs) obtained from the three models were greater than 0.998 6 and all models produced an almost identical family ranking. The accuracies of selection obtained with the CSL, THRp, and THRl model were 0.773 8, 0.775 4, and 0.784 4, respectively, the greatest from the THRl model. The genetic correlations between body weight and survival data EBVs from the CSL, THRp, and THRl models were 0.020 1, -6.201 1×10-4, and -3.115 4×10-4, respectively, and the phenotypic correlations between the two traits were -0.837 1 and -0.667 1, respectively. The findings of this study provide background information to determine the best strategy of selection for the genetic improvement of UTT in turbot.
Key words:    Scophthalmus maximus|upper thermal tolerance|genetic parameters|cross-sectional models   
Received: 2017-10-15   Revised: 2018-04-10
Tools
PDF (240 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by WANG Xin'an
Articles by MA Aijun
Articles by HUANG Zhihui
Articles by SUN Zhibin
Articles by CUI Wenxiao
Articles by QU Jiangbo
Articles by YU Hong
References:
Árnason T, Björnsson B, Steinarsson A, Oddgeirsson M. 2009.Effects of temperature and body weight on growth rate and feed conversion ratio in turbot (Scophthalmus maximus). Aquaculture, 295(3-4):218-225, https://doi.org/10.1016/j.aquaculture.2009.07.004.
Beitinger T L, Bennett W A, McCauley R W. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58(3):237-275, https://doi.org/10.1023/A:1007676325825.
Campinho M A, Moutou K A, Power D M. 2004. Temperature sensitivity of skeletal ontogeny in Oreochromis mossambicus. Journal of Fish Biology, 65(4):1 003-1 025, https://doi.org/10.1111/j.0022-1112.2004.00505.x.
Dominguez M, Takemura A, Tsuchiya M, Nakamura S. 2004.Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia, Oreochromis niloticus. Aquaculture, 241(1-4):491-500, https://doi.org/10.1016/j.aquaculture.2004.06.027.
Encomio V G, Chu F L E. 2005. Seasonal variation of heat shock protein 70 in eastern oysters (Crassostrea virginica)infected with Perkinsus marinus (Dermo). Journal of Shellfish Research, 24(1):167-175, https://doi.org/10.2983/0730-8000(2005)24[167:SVOHSP]2.0.CO;2.
Fu J J, Shen Y B, Xu X Y, Liu C C, Li J L. 2015. Genetic parameter estimates and genotype by environment interaction analyses for early growth traits in grass carp(Ctenopharyngodon idella). Aquaculture International, 23(6):1 427-1 441, https://doi.org/10.1007/s10499-015-9894-7.
Gao C R, Wang Y G, Ma A J, Zhu J X, Liu X F, Lei J L. 2006.The effects of temperature on growth, survival rate and proteases activities of juvenile turbot (Scophthalmus maximus). Marine Fisheries Research, 27(6):33-36. (in Chinese with English abstract)
Gilmour A R, Gogel B J, Cullis B R, Thompson R. 2009.ASReml User Guide Release 3.0. VSN International, Hemel Hempstead, UK.
Gitterle T, Ødegård J, Gjerde B, Rye M, Salte R. 2006. Genetic parameters and accuracy of selection for resistance to White Spot Syndrome Virus (WSSV) in Penaeus(Litopenaeus) vannamei using different statistical models.Aquaculture, 251(2-4):210-218, https://doi.org/10.1016/j.aquaculture.2005.06.008.
Huang Z H, Ma A J, Wang X A, Lei J L. 2014. The interaction of temperature, salinity and body weight on growth rate and feed conversion rate in turbot (Scophthalmus maximus). Aquaculture, 432:237-242, https://doi.org/10.1016/j.aquaculture.2014.04.013.
Imsland A K, Schram E, Roth B, Schelvis-Smit R, Kloet K. 2007. Improving growth in juvenile turbot (Scophthalmus maximus Rafinesque) by rearing fish in switched temperature regimes. Aquaculture International, 15(5):403-407, https://doi.org/10.1007/s10499-007-9099-9.
Johns D M. 1981. Physiological studies on Cancer irroratus larvae. I. Effects of temperature and salinity on survival, development rate and size. Marine Ecology Progress Series, 5:75-83, https://doi.org/10.3354/meps005075.
Larsson S, Berglund I. 2005. The effect of temperature on the energetic growth efficiency of Arctic charr (Salvelinus alpinus L.) from four Swedish populations. Journal of Thermal Biology, 30(1):29-36, https://doi.org/10.1016/j.jtherbio.2004.06.001.
Liu B S, Zhang T S, Kong J, Wang Q Y, Luan S, Cao B X. 2011. Estimation of genetic parameters for growth and upper thermal tolerance traits in turbot Scophthalmus maximus. Journal of Fisheries of China, 35(11):1 601-1 606. (in Chinese with English abstract)
Liu F, Li Y Z, Wang X X, Liu X F, Xing H F, Wu Y H, Xiu W S, Shao C W, Chen S L. 2016. Estimation of genetic parameters for disease-resistance traits in Cynoglossus semilaevis (Günther, 1873). Journal of Applied Ichthyology, 32(4):643-651, https://doi.org/10.1111/jai.13067.
Ma A J, Huang Z H, Wang X A, Guo L, Lei J L, Yang Z, Qu J B. 2012. The selective breeding of thermal tolerance family and appraisal of performance in turbot Scophthalmus maximus. Oceanologia et Limnologia Sinica, 43(4):797-804. (in Chinese with English abstract)
Ma A J, Wang X A, Huang Z H, Liu Z F, Cui W X, Qu J B. 2018. Estimation of genetic parameters for upper thermal tolerance and growth-related traits in turbot Scophthalmus maximus using the Bayesian method based on Gibbs sampling. Acta Oceanologica Sinica, 37(6):40-46, https://doi.org/10.1007/s13131-018-1185-5.
Nakajima M, Fujisawa K, Taniguchi N. 2009. Estimation of the mode of inheritance of thermal tolerance in the guppy Poecilia reticulata. Fisheries Science, 75(3):683-687, https://doi.org/10.1007/s12562-009-0089-x.
Ødegård J, Baranski M, Gjerde B, Gjedrem T. 2011.Methodology for genetic evaluation of disease resistance in aquaculture species:challenges and future prospects.Aquaculture Research, 42(S1):103-114, https://doi.org/10.1111/j.1365-2109.2010.02669.x.
Ødegård J, Olesen I, Gjerde B, Klemetsdal G. 2006. Evaluation of statistical models for genetic analysis of challenge test data on furunculosis resistance in Atlantic salmon (Salmo salar):prediction of field survival. Aquaculture, 259(1-4):116-123, https://doi.org/10.1016/j.aquaculture.2006.05.034.
Ødegård J, Olesen I, Gjerde B, Klemetsdal G. 2007. Evaluation of statistical models for genetic analysis of challenge-test data on ISA resistance in Atlantic salmon (Salmo salar):prediction of progeny survival. Aquaculture, 266(1-4):70-76, https://doi.org/10.1016/j.aquaculture.2007.02.012.
Perry G M L, Ferguson M M, Danzmann R G. 2003. Effects of genetic sex and genomic background on epistasis in rainbow trout (Oncorhynchus mykiss). Genetica, 119(1):35-50, https://doi.org/10.1023/A:1024493013926.
Perry G M L, Martyniuk C M, Ferguson M M, Danzmann R G. 2005. Genetic parameters for upper thermal tolerance and growth-related traits in rainbow trout (Oncorhynchus mykiss). Aquaculture, 250(1-2):120-128, https://doi.org/10.1016/j.aquaculture.2005.04.042.
Pess G R, Kiffney P M, Liermann M C, Bennett T R, Anderson J H, Quinn T P. 2011. The Influences of body size, habitat quality, and competition on the movement and survival of juvenile Coho Salmon during the early stages of stream recolonization. Transactions of the American Fisheries Society, 140(4):883-897, https://doi.org/10.1080/00028487.2011.587752.
Purdom C E, Jones A, Lincoln R F. 1972. Cultivation trials with turbot (Scophthalmus maximus). Aquaculture, 1:213-230, https://doi.org/10.1016/0044-8486(72)90021-X.
Rye M, Lillevik K M, Gjerde B. 1990. Survival in early life of Atlantic salmon and rainbow trout:estimates of heritabilities and genetic correlations. Aquaculture, 89(3-4):209-216, https://doi.org/10.1016/0044-8486(90)90126-8.
Sun M M, Huang J H, Jiang S G, Yang Q B, Zhou F L, Zhu C Y, Yang L S, Su T F. 2015. Estimates of heritability and genetic correlations for growth-related traits in the tiger prawn Penaeus monodon. Aquaculture Research, 46(6):1 363-1 368, https://doi.org/10.1111/are.12290.
Taylor R S, Kube P D, Muller W J, Elliott N G. 2009. Genetic variation of gross gill pathology and survival of Atlantic salmon (Salmo salar L.) during natural amoebic gill disease challenge. Aquaculture, 294(3-4):172-179, https://doi.org/10.1016/j.aquaculture.2009.06.007.
Thomas C W, Crear B J, Hart P R. 2000. The effect of temperature on survival, growth, feeding and metabolic activity of the southern rock lobster, Jasus edwardsii.Aquaculture, 185(1-2):73-84, https://doi.org/10.1016/S0044-8486(99)00341-5.
Wang X A, Ma A J, Huang Z H, Zhou Z. 2010. Heritability and genetic correlation of survival in turbot (Scophthalmus maximus). Chinese Journal of Oceanology and Limnology, 28(6):1 200-1 205, https://doi.org/10.1007/s00343-010-9014-5.
Wang X A, Ma A J, Ma D Y. 2015. Developmental quantitative genetic analysis of body weights and morphological traits in the turbot, Scophthalmus maximus. Acta Oceanologica Sinica, 34(2):55-62, https://doi.org/10.1007/s13131-015-0618-7.
Wang X A, Ma A J. 2016. Comparison of four nonlinear growth models for effective exploration of growth characteristics of turbot Scophthalmus maximus fish strain. African Journal of Biotechnology, 15(40):2 251-2 258, https://doi.org/10.5897/AJB2016.15490.
Xu L Y, Wang W J, Kong J, Luan S, Hu Y L, Ma Y. 2015.Estimates of heritability and correlation for growth traits of Turbot (Scophthalmus maximus L.) under low temperature conditions. Acta Oceanologica Sinica, 34(2):63-67, https://doi.org/10.1007/s13131-015-0616-9.
Yáñez J M, Bangera R, Lhorente J P, Oyarzún M, Neira R. 2013. Quantitative genetic variation of resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar).Aquaculture, 414-415:155-159, https://doi.org/10.1016/j.aquaculture.2013.08.009.
Zhang T S, Kong J, Liu B S, Wang QY, Cao BX, Luan S, Wang WJ. 2014. Genetic parameter estimation for juvenile growth and upper thermal tolerance in turbot(Scophthalmus maximus Linnaeus). Acta Oceanologica Sinica, 33(8):106-110, https://doi.org/10.1007/s13131-014-0460-3.