Cite this paper:
WANG Ruifang, HUANG Xiaorong, WANG Haihua, LU Jianxue, SHI Xiaotao, FENG Guangpeng, ZHUANG Ping. Effects of salinity on embryonic and larval development of Chinese mitten crab Eriocheir sinensis (Decapoda: Brachyura) and salinity-induced physiological changes[J]. HaiyangYuHuZhao, 2019, 37(5): 1777-1788

Effects of salinity on embryonic and larval development of Chinese mitten crab Eriocheir sinensis (Decapoda: Brachyura) and salinity-induced physiological changes

WANG Ruifang1,2, HUANG Xiaorong1, WANG Haihua1, LU Jianxue1, SHI Xiaotao3, FENG Guangpeng1, ZHUANG Ping1
1 East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
2 College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
3 Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, Three Gorges University, Yichang 443002, China
Abstract:
To investigate the effects of salinity on early development of Chinese mitten crab (Eriocheir sinensis), and the salinity tolerance mechanism of embryos, different developmental stages of embryos (gastrula, eyespot and pre-hatching stage), and hatched stage I zoea and megalopa, were exposed to a range of salinities (1, 5, 10, 15 (control), 20, 25, 30, 35 and 40). Hatching, survival and molting were monitored. Effects of 24-hour hypersaline (35) and hyposaline (1) stress on egg diameter, water content, Na+/K+-ATPase (NKA) activity, and crustacean hyperglycemic hormone (CHH) gene mRNA expression in embryos and megalopa, are reported. Embryos are more tolerant of low (≤5) than high (≥ 25) salinities, with optimum ranges for gastrula and pre-hatching stage embryos being 5-20, and for eyespot embryo and stage I zoea, 10-20. Most megalopa can molt to the first juvenile instar by day 5 at salinities between 1 and 40, whereas molting of megalopa stages was delayed at 40. Hypersaline conditions resulted in a loss of moisture, reduction of egg volume, and a significant increase in NKA activity and CHH mRNA expression at some developmental stages. Hyposaline conditions did not affect moisture content or egg volume, but resulted in decreased NKA activity and CHH mRNA expression in embryos. For megalopa stages, NKA activity was significantly upregulated following both hypo-and hypersaline stress. Our results suggest high salinity will inhibit development and hatching of E. sinensis embryos, and low salinity will affect the survival of their stage I zoea. Increased NKA activity in embryos and megalopa stages might indicate a hyporegulation response under hypersaline conditions. These findings provide useful information for spawning ground protection of indigenous E. sinensis and enrich the knowledge of embryonic tolerance mechanisms of hyperregulating crustaceans following osmotic stress.
Key words:    Eriocheir sinensis|salinity|embryo development|zoea|megalopa|Na+/K+-ATPase   
Received: 2018-08-08   Revised: 2018-12-03
Tools
PDF (703 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by WANG Ruifang
Articles by HUANG Xiaorong
Articles by WANG Haihua
Articles by LU Jianxue
Articles by SHI Xiaotao
Articles by FENG Guangpeng
Articles by ZHUANG Ping
References:
Anger K. 1991. Effects of temperature and salinity on the larval development of the Chinese mitten crab Eriocheir sinensis (Decapoda:Grapsidae). Mar. Ecol. Prog. Ser., 72:103-110.
Anger K. 2001. The Biology of Decapod Crustacean Larvae.A.A. Balkema Publishers, Lisse Exton. p.1-420.
Anger K. 2003. Salinity as a key parameter in the larval biology of decapod crustaceans. Inv. Repr. Dev., 43(1):29-45.
Bentley M G. 2010. The global spread of the Chinese mitten crab Eriocheir sinensis. In:Galil B S, Clark P F, Carlton J T eds. In the Wrong Place-Alien Marine Crustaceans:Distribution, Biology and Impacts. Springer, Dordrecht.
Bystriansky J S, Richards J G, Schulte P M, Ballantyne J S. 2006. Reciprocal expression of gill Na+/K+-ATPaseα-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. J. Exp. Biol., 209(10):1 848-1 858.
Chang E S. 2005. Stressed-out lobsters:crustacean hyperglycemic hormone and stress protein. Integr. Comp.Biol., 45(1):43-50.
Charmantier G, Aiken D E. 1987. Osmotic regulation in late embryos and prelarvae of the American lobster Homarus americanus H. Milne-Edwards 1837 (Crustacea, Decapoda). J. Exp. Mar. Biol. Ecol., 109(2):101-108.
Charmantier G, Charmantier-Daures M, Aiken D E. 1984.Neuroendocrine control of hydromineral regulation in the American lobster Homarus americanus H. MilneEdwards, 1837 (Crustacea, Decapoda):1-Juveniles. Gen.Comp. Endocrinol., 54(1):8-19.
Charmantier G, Charmantier-Daures M, Anger K. 1998.Ontogeny of osmoregulation in the grapsid crab Armases miersii (Crustacea, Decapoda). Mar. Ecol. Prog. Ser., 164:285-292.
Charmantier G, Charmantier-Daures M. 2001. Ontogeny of osmoregulation in Crustaceans:the embryonic phase.Amer. Zool., 41(5):1 078-1 089.
Charmantier-Daures M, Charmantier G, Janssen K P C, Aiken D E, Van Herp F. 1994. Involvement of eyestalk factors in the neuroendocrine control of Osmoregulation in adult American lobster Homarus americanus. Gen. Comp.Endocrinol., 94(3):281-293.
Chung J S, Webster S G. 2006. Binding sites of crustacean hyperglycemic hormone and its second messengers on gills and hindgut of the green shore crab, Carcinus maenas:a possible osmoregulatory role. Gen. Comp.Endocrinol., 147(2):206-213.
Cieluch U, Anger K, Charmantier-Daures M, Charmantier G. 2007. Osmoregulation and immunolocalization of Na+/K+-ATPase during the ontogeny of the mitten crab Eriocheir sinensis (Decapoda, Grapsoidea). Mar. Ecol.Prog. Ser., 329:169-178.
Deane E E, Woo N Y S. 2004. Differential gene expression associated with euryhalinity in sea bream (Sparus sarba).Am. J. Physiol. Regul. Integr. Comp. Physiol., 287(5):R1 054-R1 063.
Dittel A I, Epifanio C E. 2009. Invasion biology of the Chinese mitten crab Eriochier sinensis:a brief review. J. Exp.Mar. Biol. Ecol., 374(2):79-92.
Ehlinger G S, Tankersley R A. 2004. Survival and development of horseshoe crab (Limulus polyphemus) embryos and larvae in hypersaline conditions. Biol. Bull., 206(2):87-94.
Ehlinger G S. 2002. Spawning Behavior and Larval Biology of the American Horseshoe Crab, Limulus polyphemus, in A Microtidal Coastal Lagoon. Florida institute of Technology, Melbourne, FL. 133p.
Flik G, Haond C. 2000. Na+ and Ca2+ pumps in the gills, epipodites and branchiostegites of the European lobster Homarus gammarus:effects of dilute sea water. J. Exp.Biol., 203:213-220.
Herborg L M, Rushton S P, Clare A S, Bentley M G. 2003.Spread of the Chinese mitten crab (Eriocheir sinensis H.Milne Edwards) in Continental Europe:analysis of a historical data set. Hydrobiologia, 503(1-3):21-28.
Huang W. 1989. The artificial breeding of natural marine Chinese mitten crab Eriocheir sinensis. J. Aquac., 5:2-3.(in Chinese)
Hui M, Liu Y, Song C W, Li Y D, Shi G H, Cui Z X. 2014.Transcriptome Changes in Eriocheir sinensis Megalopae after desalination provide insights into osmoregulation and stress adaption in larvae. PLoS One, 9(12):e114187.
Ituarte R B, Spivak E D, Anger K. 2005. Effects of salinity on embryonic development of Palaemonetes argentinus(Crustacea:Decapoda:Palaemonidae) cultured in vitro.Invertebr. Reprod. Dev., 47(3):213-223.
Ituarte R B. 2008. Efectos de la Salinidad Sobre la Reproduccióny el Desarrollo del Camarón de Agua Dulce Palaemonetes Argentinus. Universidad Nacional de Mar del Plata, Mar del Plata.
Kamemoto F I. 1991. Neuroendocrinology of osmoregulation in crabs. Zool. Sci., 8:827-833.
Lago-Lestón A, Ponce E, Muñoz M E. 2007. Cloning and expression of hyperglycemic (CHH) and molt-inhibiting(MIH) hormones mRNAs from the eyestalk of shrimps of Litopenaeus vannamei grown in different temperature and salinity conditions. Aquaculture, 270(1-4):343-357.
Liu Z Q, Zhou Z, Wang L L, Li M J, Wang W L, Yi Q L, Huang S, Song L S. 2018. Dopamine and serotonin modulate free amino acids production and Na+/K+ pump activity in Chinese mitten crab Eriocheir sinensis Under Acute Salinity Stress. Front. Physiol., 9:1 080.
Long X W, Wu X G, Zhao L, Ye H H, Cheng Y X, Zeng C S. 2017. Effects of salinity on gonadal development, osmoregulation and metabolism of adult male Chinese mitten crab, Eriocheir sinensis. PLoS One, 12(6):e0179036.
Lucu Č, Flik G. 1999. Na+-K+-ATPase and Na+/Ca2+ exchange activities in gills of hyperregulating Carcinus maenas.Am. J. Physiol., 276(2):R490-R499.
Lucu Č, Towle D W. 2003. Na+/K+-ATPase in gills of aquatic crustacea. Comp. Biochem. Physiol A Mol. Integr.Physiol., 135(2):195-214.
Mantel L H. 1985. Neurohormonal integration of osmotic and ionic regulation. Integr. Comp. Biol., 25(1):253-263.
Mashiko K. 1983. Differences in the egg and clutch sizes of the prawn Macrobrachium nipponense (de Haan) between brackish and fresh waters of a river. Zool. Mag. Tokyo, 92:1-9.
McNamara J C, Lima A G. 1997. The route of ion and water movements across the gill epithelium of the freshwater shrimp Macrobrachium olfersii (Decapoda, Palaemonidae):evidence from ultrastructural changes induced by acclimation to saline media. Biol. Bull., 192(2):321-331.
Montú M, Anger K, de Bakker C. 1996. Larval development of the Chinese mitten crab Eriocheir sinensis H. MilneEdwards (Decapoda:Grapsidae) reared in the laboratory.Helgol. Meeresunters., 50(2):223-252.
Otto T, Brandis D. 2011. First evidence of Eriocheir sinensis reproduction from Schleswig-Holstein, Northern Germany, western Baltic Sea. Aquat. Inv., 6 Suppl 1:S65-S69.
Panning A. 1939. The Chinese mitten crab. Annu. Rep.Smithson. Inst., 1 938:361-375.
Petersen S, Anger K. 1997. Chemical and physiological changes during the embryonic development of the spider crab, Hyas araneus L. (Decapoda:Majidae). Comp.Biochem. Phys Part B Biochem. Mol. Biol., 11 7(2):299-306.
Samuel N J, Soundarapandian P. 2010. Effect of salinity on the growth, survival and development of the commercially important portunid crab larvae of Portunus sanguinolentus(Herbst). Curr. Res. J. Biol. Sci., 2(4):286-293.
Seneviratna D. 2003. Ontogeny of Osmoregulation of the Embryos of Two Intertidal Crabs Hemigrapsus edwardsii and Hemigrapsus crenulatus. University of Canterbury, New Zealand.
Serrano L, Blanvillain G, Soyez D, Charmantier G, Grousset E, Aujoulat F, Spanings-Pierrot C. 2003. Putative involvement of crustacean hyperglycemic hormone isoforms in the neuroendocrine mediation of osmoregulation in the crayfish Astacus leptodactylus. J.Exp. Biol., 206(6):979-988.
Serrano L, Towle D W, Charmantier G, Spanings-Pierrot C. 2007. Expression of Na+/K+-ATPase α-subunit mRNA during embryonic development of the crayfish Astacus leptodactylus. Comp. Biochem. Physiol Part D Genomics Proteomics, 2(2):126-134.
Spanings-Pierrot C, Soyez D, van Herp F, Gompel M, Skaret G, Grousset E, Charmantier G. 2000. Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. Gen.Comp. Endocrinol., 119(3):340-350.
Susanto N G, Charmantier G. 2001. Crayfish freshwater adaptation starts in eggs:ontogeny of osmoregulation in embryos of Astacus leptodactylus. J. Exp. Zool., 289(7):433-440.
Taylor H H, Seneviratna D. 2005. Ontogeny of salinity tolerance and hyper-osmoregulation by embryos of the intertidal crabs Hemigrapsus edwardsii and Hemigrapsus crenulatus (Decapoda, Grapsidae):survival of acute hyposaline exposure. Comp. Biochem. Physiol. Part A Mol. Int. Physiol., 140(4):495-505.
Towle D W. 1990. Sodium transport systems in gills. In:Kinne R K H ed. Comparative aspects of sodium cotransport systems. Karger Publishing, Basel. p.241-263.
Turner L M, Webster S G, Morris S. 2013. Roles of crustacean hyperglycaemic hormone in ionic and metabolic homeostasis in the Christmas Island blue crab, Discoplax celeste. J. Exp. Biol., 216(7):1 191-1 201.
Wang J Q, Zhang T, Tong Y, Liu J, Luo M, Liu W F, Geng W, Zhang Y. 2005. Effects of embryonic developmental stages in vitro from fertilized eggs in Chinese mitten crab Eriocheir sinensis on larva rearing. J. Dalian Fish. Univ., 20(3):192-197. (in Chinese with English abstract)
Wang R F, Zhuang P, Feng G P, Zhang L Z, Huang X R, Jia X Y. 2012. Osmotic and ionic regulation and Na+/K+-ATPase, carbonic anhydrase activities in mature Chinese mitten crab, Eriocheir sinensis H. Milne Edwards, 1853(Decapoda, Brachyura) exposed to different salinities.Crustaceana, 85(12-13):1 431-1 447.
Wear R G. 1974. Incubation in British decapod Crustacea, and the effects of temperature on the rate and success of embryonic development. J. Mar. Biol. Assoc. UK, 54(3):745-762.
Wilder M N, Huong D T T, Atmomarsono M, Hien T T T, Phu T Q, Yang W J. 2000. Characterization of Na/K-ATPase in Macrobrachium rosenbergii and the effects of changing salinity on enzymatic activity. Comp. Biochem. Physiol Part A Mol. Int. Physiol., 125(3):377-388.
Wilder M N, Huong D T T, Okuno A, Atmomarsono M, Yang W J. 2001. Ouabain-sensitive Na/K-ATPase activity increases during embryogenesis in the giant freshwater prawn Macrobrachium rosenbergii. Fish. Sci., 67(1):182-184.
Wójcik D, Normant M. 2014. Gonad maturity in female Chinese mitten crab Eriocheir sinensis from the southern Baltic Sea-the first description of ovigerous females and the embryo developmental stage. Oceanologia, 56(4):779-787.
Xu B S, He L G. 1987. Culture technology of Chinese mitten crab Eriocheir sinensis. Jindun Publishers, Beijing. p.67-68.
Xu R W, Jiang J B. 1996. Preliminery study on tolerance of mitten crab larva to salinity variations. Fish. Sci. Technol.Inform., 23(4):147-150. (in Chinese with English abstract)
Zang W L, Jiang M, Dai X L, Geng Y H, Shen L H, Wang J L, Wang J Z, Liu Z K, Zhang S H. 1999. Effects of salinity on larval development of Eriocheir sinensis. J. Shanghai Fish. Univ., 8(2):174-178. (in Chinese)
Zhang T L, Li Z J, Cui Y B. 2001. Survival, growth, sex ratio, and maturity of the Chinese mitten crab (Eriocheir sinensis) reared in a Chinese pond. J. Freshw. Ecol., 16(4):633-640.
Zhao L, Chen H L, Sun D X. 2004. Effect of salinity on larval culture in crab. Freshw. Fish., 34(4):33-35. (in Chinese)