Cite this paper:
WANG Zhifeng, GONG Yijie, CUI Junnan, DONG Sheng, WU Kejian. Effect of the drag coefficient on a typhoon wave model[J]. HaiyangYuHuZhao, 2019, 37(6): 1795-1804

Effect of the drag coefficient on a typhoon wave model

WANG Zhifeng, GONG Yijie, CUI Junnan, DONG Sheng, WU Kejian
Ocean University of China, Qingdao 266100, China
The effect of the drag coefficient on a typhoon wave model is investigated. Drag coefficients for Pingtan Island are derived from the progress of nine typhoons using COARE 3.0 software. The wind parameters are obtained using the Weather Research and Forecasting model. The simulation of wind agrees well with observations. Typhoon wave fields are then simulated using the third-generation wave model SWAN. The wave model includes exponential and linear growths of the wind input, which determine the wave-growth mode. A triple triangular mesh is adopted with spatial resolution as fine as 100 m nearshore. The SWAN model performs better when using the new drag coefficient rather than the original coefficient.
Key words:    drag coefficient|typhoon wind|typhoon wave|numerical simulation   
Received: 2018-09-18   Revised: 2019-03-18
PDF (1368 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by WANG Zhifeng
Articles by GONG Yijie
Articles by CUI Junnan
Articles by DONG Sheng
Articles by WU Kejian
Alves J H G M, Banner M L. 2003. Performance of a saturationbased dissipation-rate source term in modeling the fetchlimited evolution of wind waves. Journal of Physical Oceanography, 33(6):1 274-1 298.
Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions:1. Model description and validation. Journal of Geophysical Research:Oceans, 104(C4):7 649-7 666.
Bricheno L M, Soret A, Wolf J, Jorba O, Baldasano J M. 2013.Effect of high-resolution meteorological forcing on nearshore wave and current model performance. Journal of Atmospheric and Oceanic Technology, 30(6):1 021-1 037.
Cavaleri L, Malanotte Rizzoli P. 1981. Wind wave prediction in shallow water:theory and applications. Journal of Geophysical Research:Oceans, 86(C11):10 961-10 973.
Chalikov D, Babanin A V. 2012. Simulation of wave breaking in one-dimensional spectral environment. Journal of Physical Oceanography, 42(11):1 745-1 761.
Charnock H. 1955. Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350):639-640.
Decharme B. 2007. Influence of runoff parameterization on continental hydrology:comparison between the Noah and the ISBA land surface models. Journal of Geophysical Research:Atmospheres, 112(D19):D19108.
Dietrich J C, Zijlema M, Allier P E, Holthuijsen L H, Booij N, Meixner J D, Proft J K, Dawson C N, Bender C J, Naimaster A, Smith J M, Westerink J J. 2013. Limiters for spectral propagation velocities in SWAN. Ocean Modelling, 70:85-102.
Donelan M A, Haus B K, Reul N, Plant W J, Stiassnie M, Graber H C, Brown O B, Saltzman E S. 2004. On the limiting aerodynamic roughness of the ocean in very strong winds.Geophysical Research Letters, 31(18):L18306.
Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20):3 077-3 107.
Eldeberky Y. 1996. Nonlinear Transformation of Wave Spectra in the Nearshore Zone. Ph. D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands.
Fairall C W, Bradley E F, Hare J E, Grachev A A, Edson J B. 2003. Bulk parameterization of air-sea fluxes:updates and verification for the COARE algorithm. Journal of Climate, 16(4):571-591.
Fan Y L, Rogers W E. 2016. Drag coefficient comparisons between observed and model simulated directional wave spectra under hurricane conditions. Ocean Modelling, 102:1-13.
Hasselmann K. 1974. On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorology, 6(1-2):107-127.
Hasselmann S, Hasselmann K, Allender J H, Barnett T P. 1985.Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II:parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11):1 378-1 391.
Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9):2 318-2 341.
Janssen P A E M. 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(11):1 631-1 642.
Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences, 47(23):2 784-2 802.
Kim Y, Jang S C, Lim T J. 2015. Hazard analysis of typhoonrelated external events using extreme value theory.Nuclear Engineering and Technology, 47(1):59-65.
Komen G J, Hasselmann K, Hasselmann K. 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8):1 271-1 285.
Lee H S. 2015. Evaluation of WAVEWATCH III performance with wind input and dissipation source terms using wave buoy measurements for October 2006 along the east Korean coast in the East Sea. Ocean Engineering, 100:67-82.
Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A. 1997. Radiative transfer for inhomogeneous atmospheres:RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research:Atmospheres, 102(D14):16 663-16 682.
Moeini M H, Etemad-Shahidi A, Chegini V. 2010.Wave modeling and extreme value analysis off the northern coast of the Persian Gulf. Applied Ocean Research, 32(2):209-218.
Oost W A, Komen G J, Jacobs C M J, Van Oort C. 2002. New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. BoundaryLayer Meteorology, 103(3):409-438.
Rascle N, Ardhuin F. 2013. A global wave parameter database for geophysical applications. Part 2:model validation with improved source term parameterization. Ocean Modelling, 70:174-188.
Ris R C, Holthuijsen L H, Booij N. 1999. A third-generation wave model for coastal regions:2. verification. Journal of Geophysical Research:Oceans, 104(C4):7 667-7 681.
Roland A, Ardhuin F. 2014. On the developments of spectral wave models:numerics and parameterizations for the coastal ocean. Ocean Dynamics, 64(6):833-846.
Rusu E, Pilar P, Guedes Soares C. 2008. Evaluation of the wave conditions in Madeira archipelago with spectral models. Ocean Engineering, 35(13):1 357-13 71.
Siadatmousavi S M, Jose F, Stone G W. 2012. On the importance of high frequency tail in third generation wave models. Coastal Engineering, 60:248-260.
Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Duda M G, Huang X Y, Wang W, Powers J G. 2008. A Description of the Advanced Research WRF Version 3.NCAR/TN-475+STR NCAR/TN-475+STR. National Center for Atmospheric Research, Boulder, Colorado, USA. p.1-113.
Smith S D, Banke E G. 1975. Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101(429):665-673.
Smith S D. 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research:Oceans, 93(C12):15 467-15 472.
Takagaki N, Komori S, Suzuki N, Iwano K, Kurose R. 2016.Mechanism of drag coefficient saturation at strong wind speeds. Geophysical Research Letters, 43(18):9 829-9 835.
Taylor P K, Yelland M J. 2001. The dependence of sea surface roughness on the height and steepness of the waves.Journal of Physical Oceanography, 31(2):572-590.
Tolman H L. 1992. Effects of numerics on the physics in a third-generation wind-wave model. Journal of Physical Oceanography, 22(10):1 095-1 111.
Tsai Y S, Chang W T, Yu C M, Yang W C. 2018. General sea state and drag coefficient observed near shore in Taiwan Strait. Procedia IUTAM, 26:204-213.
Vickers D, Mahrt L, Andreas E L. 2013. Estimates of the 10-m neutral sea surface drag coefficient from aircraft eddycovariance measurements. Journal of Physical Oceanography, 43(2):301-310.
WAMDI Group 1988. The WAM ModelA third gen-eration ocean wave prediction model. Journal of Physical Oceanography, 18(12):1 775-1 810.
Wang Y, Jiang X W. 2012. Improvement and application of a saturation based wave dissipation function in SWAN model. Acta Oceanologica Sinica, 31(1):24-32.
Wu J. 1982. Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research:Oceans, 87(C12):9 704-9 706.
Yan L. 1987. An Improved Wind Input Source Term for Third Generation Ocean Wave Modelling. Scientific Report WR-No87-8, KNMI, De Bilt, The Netherlands.
Zhao D L, Li M X. 2018. Dependence of wind stress across an air-sea interface on wave states. Journal of Oceanography, 1-17. (in press)
Zijlema M, van der Westhuysen A J. 2005. On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra. Coastal Engineering, 52(3):237-256.
Zijlema M, van Vledder G P, Holthuijsen L H. 2012. Bottom friction and wind drag for wave models. Coastal Engineering, 65:19-26.