Cite this paper:
JIANG Xingjie, GUAN Changlong, WANG Daolong. Rogue waves during Typhoon Trami in the East China Sea[J]. HaiyangYuHuZhao, 2019, 37(6): 1817-1836

Rogue waves during Typhoon Trami in the East China Sea

JIANG Xingjie1,2, GUAN Changlong2, WANG Daolong1,2
1 First Institute of Oceanography (FIO), Ministry of Natural Resources (MNR), Qingdao 266061, China;
2 Ocean University of China, Qingdao 266071, China
As concluded from physical theory and laboratory experiment, it is widely accepted that nonlinearities of sea state play an important role in the formation of rogue waves; however, the sea states and corresponding nonlinearities of real-world rogue wave events remain poorly understood. Three rogue waves were recorded by a directional buoy located in the East China Sea during Typhoon Trami in August 2013. This study used the WAVEWATCH III model to simulate the sea state conditions pertaining to when and where those rogue waves were observed, based on which a comprehensive and full-scale analysis was performed. From the perspectives of wind and wave fields, wave system tracking, High-Order Spectral method simulation, and some characteristic sea state parameters, we concluded that the rogue waves occurred in sea states dominated by second-order nonlinearities. Moreover, third-order modulational instabilities were suppressed in these events because of the developed or fully developed sea state determined by the typhoon wave system. The method adopted in this study can provide comprehensive and full-scale analysis of rogue waves in the real world. The case studied in this paper is not considered unique, and rules could be found and confirmed in relation to other typhoon sea states through the application of our proposed method.
Key words:    rogue wave|wave system tracking|High-Order Spectral method|nonlinear effect   
Received: 2018-09-25   Revised: 2019-03-19
PDF (3628 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by JIANG Xingjie
Articles by GUAN Changlong
Articles by WANG Daolong
Ardhuin F, Rogers W, Babanin A V, Filipot J F, Magne R, Roland A, van der Westhuysen A, Queffeulou P, Lefevre J M, Aouf L, Collard F. 2010.Semiempirical dissipation source functions for ocean waves. Part I:definition, calibration, and validation. J. Phys. Oceanogr., 40(9):1 917-1 941.
Barbariol F, Benetazzo A, Carniel S, Sclavo M. 2015. Spacetime wave extremes:the role of metocean forcings. J.Phys. Oceanogr., 45(7):1 897-1 916,
Baxevani A, Rychlik I. 2006. Maxima for Gaussian seas.Ocean Eng., 33(7):895-911,
Devaliere E M, Hanson J L, Luettich R. 2009. Spatial tracking of numerical wave model output using a spiral search algorithm. In:Proceedings of 2009 WRI World Congress on Computer Science and Information Engineering.IEEE, Angeles, CA, USA. p.404-408,
Dommermuth D. 2000. The initialization of nonlinear waves using an adjustment scheme. Wave Motion, 32(4):307-317,
Dommermuth D G, Yue D K P. 1987. A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech., 184:267-288,
Ducrozet G, Bonnefoy F, Le Touzé D, Ferrant P. 2007. 3-D HOS simulations of extreme waves in open seas. Nat.Hazards Earth Syst. Sci., 7(1):109-122,
Ducrozet G, Bonnefoy F, Le Touzé D, Ferrant P. 2016. HOSocean:open-source solver for nonlinear waves in open ocean based on high-order spectral method. Comput.Phys. Commun., 203:245-254,
Ducrozet G, Bonnefoy F, Perignon Y. 2017. Applicability and limitations of highly non-linear potential flow solvers in the context of water waves. Ocean Eng., 142:233-244,
Dysthe K, Krogstad H E, Müller P. 2008. Oceanic rogue waves. Annu. Rev. Fluid Mech., 40:287-310,
Dysthe K, Trulsen K, Krogstad H E, Socquet-Juglard H. 2003.Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech., 478:1-10.
ECMWF. 2016. Part VII:ECMWF Wave Model. IFS Documentation CY43R1,
Fedele F. 2008. Rogue waves in oceanic turbulence. Phys. D:Nonlinear Phenom., 237(14-17):2 127-2 131,
Fedele F. 2012. Space-time extremes in short-crested storm seas. J. Phys. Oceanogr., 42(9):1 601-1 615,
Fedele F. 2015. On the kurtosis of deep-water gravity waves.J. Fluid Mech., 782:25-36,
Fedele F, Brennan J, Ponce de León S, Dudley J, Dias F. 2016.Real world ocean rogue waves explained without the modulational instability. Sci. Rep., 6:27 715,
Fedele F, Lugni C, Chawla A. 2017. The sinking of the El Faro:predicting real world rogue waves during hurricane Joaquin. Sci. Rep., 7(1):11 188,
Fedele F, Tayfun M. 2009. On nonlinear wave groups and crest statistics. J. Fluid Mech., 620:221-239,
Fernandez L, Onorato M, Monbaliu J, Toffoli A. 2014.Modulational instability and wave amplification in finite water depth. Nat. Hazards Earth Syst. Sci., 14(3):705-711,
Goda Y. 1970. Numerical experiments on wave statistics with spectral simulation. Rep. Port Harb. Res. Inst., 9(3):3-57.
Hanson J L, Jensen R E. 2004. Wave system diagnostics for numerical wave models. In:Proceedings of the 8th International Workshop on Wave Hindcasting and Forecasting Turtle Bay Resort. Coastal and Hydraulics Laboratory, Oahu, Hawaii.
Hanson J L, Phillips O M. 2001. Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol., 18(2):277-293,<0277:AAOOSD>2.0.CO.
Hanson J L, Tracy B A, Tolman H L, Scott R D. 2009. Pacific hindcast performance of three numerical wave models. J.Atmos. Oceanic Technol., 26(8):1 614-1 633,
Hasselmann K. 1962. On the non-linear energy transfer in a gravity-wave spectrum part 1. General theory. J. Fluid Mech., 12(4):481-500,
Hasselmann K. 1963a. On the non-linear energy transfer in a gravity wave spectrum part 2. Conservation theorems;wave-particle analogy; irrevesibility. J. Fluid Mech., 15(2):273-281,
Hasselmann K. 1963b. On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum. J.Fluid Mech., 15(3):385-398,
Hasselmann S, Hasselmann K, Allender J H, Barnett T P. 1985.Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II:parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15(11):1 378-1 391.
In K, Waseda T, Kiyomatsu K, Tamura H, Miyazawa Y, Iyama K. 2009. Analysis of a marine accident and freak wave prediction with an operational wave model. In:Proceedings of the 19th International Offshore and Polar Engineering Conference. SPE, Osaka, Japan. p.877-883.
Janssen P A E M. 2003. Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr., 33(4):863-884,<863:NFIAFW>2.0.CO;2.
Janssen P A E M. 2009. On some consequences of the canonical transformation in the Hamiltonian theory of water waves.J. Fluid Mech., 637:1-44,
Janssen P A E M. 2014. On a random time series analysis valid for arbitrary spectral shape. J. Fluid Mech., 759:236-256,
Janssen P A E M. 2018. Shallow-water version of the Freak Wave Warning System. ECMWF Tech. Memo., 813.
Janssen P A E M, Bidlot J R. 2009. On the extension of the freak wave warning system and its verification. ECMWF Tech.Memo., 588.
Janssen P A E M, Onorato M. 2007. The intermediate water depth limit of the zakharov equation and consequences for wave prediction. J. Phys. Oceanogr., 37:2 389-2 400,
Kharif C, Pelinovsky E. 2003. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B/Fluids, 22(6):603-634,
Kharif C, Pelinovsky E, Slunyaev A. 2009. Rogue Waves in the Ocean. Springer, Berlin, Heidelberg, 2p.
Kuik A J, van Vledder G P, Holthuijsen L H. 1988. A method for the routine analysis of pitch-and-roll buoy wave data.J. Phys. Oceanogr., 18(7):1 020-1 034,<1020:AMFTRA>2.0.CO;2.
Longuet-Higgins M S. 1957. The statistical analysis of a random, moving surface. Phil. Trans. Roy. Soc. A., 1957, 249(966):321-387.
Mori N, Janssen P A E M. 2006. On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr., 36(7):1 471-1 483,
Mori N, Onorato M, Janssen P A E M. 2011. On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr., 41(8):1 484-1 497,
Pierson W J Jr, Moskowitz L. 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69(24):5 181-5 190.
Saha S et al. 2011. NCEP Climate Forecast System Version 2(CFSv2) selected hourly time-series products. Research data archive at the national center for atmospheric research, computational and information systems laboratory, Accessed 28 May 2018.
Sergeeva A, Slunyaev A. 2013. Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states. Nat. Hazards Earth Syst. Sci., 13(7):1 759-1 771,
Tamura H, Waseda T, Miyazawa Y. 2009. Freakish sea state and swell-windsea coupling:numerical study of the Suwa-Maru incident. Geophys. Res. Lett., 36(1):L01607,
Tayfun M A. 1980. Narrow-band nonlinear sea waves. J.Geophys. Res. Oceans, 85(C3):1 548-1 552,
Tayfun M A. 2006. Statistics of nonlinear wave crests and groups. Ocean Eng., 33(11-12):1 589-1 622,
Tayfun M A, Fedele F. 2007. Wave-height distributions and nonlinear effects. Ocean Eng., 34(11-12):1 631-1 649,
Tayfun M A, Lo J M. 1990. Nonlinear effects on wave envelope and phase. J. Waterw. Port, Coastal, Ocean Eng., 116(1):79-100,
The WAVEWATCH III Development Group (WW3DG). 2016.User manual and system documentation of WAVEWATCH III R Version 5.16. Tech. Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, Accessed 09 Mar 2018.
Toffoli A, Gramstad O, Trulsen K, Monbaliu J, Bitner-Gregersen E, Onorato M. 2010.Evolution of weakly nonlinear random directional waves:laboratory experiments and numerical simulations. J. Fluid Mech., 664:313-336,
Tolman H L. 1991. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr., 21(6):782-797,<0782:ATGMFW> 2.0.CO;2.
Vincent L, Soille P. 1991. Watersheds in digital spaces:an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell., 13(6):583-598.
Voorrips A C, Makin V K, Hasselmann S. 1997. Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model. J. Geophys. Res. Oceans, 102(C3):5 829-5 849,
Waseda T, Tamura H, Kinoshita T. 2012. Freakish sea index and sea states during ship accidents. J. Mar. Sci. Technol., 17(3):305-314,
Waseda T, In K, Kiyomatsu K, Tamura H, Miyazawa Y, Iyama K. 2014. Predicting freakish sea state with an operational third-generation wave model. Nat. Hazards Earth Syst.Sci., 14(4):945-957,
West B J, Brueckner K A, Janda R S, Milder D M, Milton R L. 1987. A new numerical method for surface hydrodynamics.J. Geophys. Res.:Oceans, 92(C11):11 803-11 824,
Xiao W T, Liu Y M, Wu G Y, Yue D K P. 2013. Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J. Fluid Mech., 720:357-392,
Ying M, Zhang W, Yu H, Lu X Q, Feng J X, Fan Y X, Zhu Y T, Chen D Q. 2014. An overview of the China meteorological administration tropical cyclone database. J. Atmos.Oceanic Technol., 31(2):287-301,
Zakharov V E. 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech.Tech. Phys., 9(2):190-194,