Cite this paper:
YANG Yongzeng, SHI Yongfang, YU Chencheng, TENG Yong, SUN Meng. Study on surface wave-induced mixing of transport flux residue under typhoon conditions[J]. HaiyangYuHuZhao, 2019, 37(6): 1837-1845

Study on surface wave-induced mixing of transport flux residue under typhoon conditions

YANG Yongzeng1,2,3, SHI Yongfang1, YU Chencheng4, TENG Yong1, SUN Meng1
1 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
2 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China;
3 Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China;
4 Zhejiang University, Zhoushan 316021, China
The transport flux residue of surface waves plays an important role in a variety of ocean phenomena, for example, the change in sea surface temperature (SST) and upper mixed layer profile that were studied in a series of recent papers. In the previous studies, its effect was discussed rigorously and fragmented based on numerical modeling. Here we propose a relatively comprehensive and simplified exposition of the wave transport flux residue, and focus on its influence under typhoon conditions with strong background current. An analogue Reynolds Number is presented for tentative comparison with wave-generated turbulence mixing, especially in the coastal area. Numerical results indicate that both overwhelming dynamical mixing processes can remarkably change the coastal environment, and should not be ignored consciously for further marine hazards assessment.
Key words:    wave transport flux residue|decomposition scheme|Analogue Reynolds Number   
Received: 2018-09-26   Revised: 2019-05-10
PDF (1004 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by YANG Yongzeng
Articles by SHI Yongfang
Articles by YU Chencheng
Articles by TENG Yong
Articles by SUN Meng
Agrawal Y C, Terray E A, Donelan M A, Hwang P A, Williams III A J, Drennan W M, Kahma K K, Krtaigorodskii S A. 1992. Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359(6392):219-220.
Babanin A V, Chalikov D. 2012. Numerical investigation of turbulence generation in non-breaking potential waves. J.Geophys. Res., 117(C11):C06010,
Babanin A V. 2006. On a wave-induced turbulence and a wavemixed upper ocean layer. Geophys. Res. Lett., 33(20):L20605,
Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24(12):2 546-2 559.
Dai D J, Qiao F L, Sulisz W, Han L, Babanin A. 2010.An experiment on the nonbreaking surface-wave-induced vertical mixing. J. Phys. Oceanogr., 40(9):2 180-2 188.
Hasselmann K. 1970. Wave-driven inertial oscillations.Geophys. Fluid Dyn., l(3-4):463-502.
Lai Q Z, Ma L M, Huang W, Wu L G. 2013. The ocean response to Typhoon Morakot (2009) in the western North Pacific boundary region. Acta Oceanol. Sin., 35(3):65-77. (in Chinese with English abstract)
Lewis D M, Belcher S E. 2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans, 37(4):313-351.
Liu Z H, Xu J P, Sun C H, Wu X F. 2014. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanol. Sin., 33(11):90-101.
Liu Z H, Xu J P, Zhu B K, Sun C H, Zhang L F. 2007. The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data. Chin. J.Oceanol. Limnol., 25(2):123-131.
Longuet-Higgins M S, Stewart R W. 1962. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. J. Fluid Mech., 13(4):481-504.
Longuet-Higgins M S, Stewart R W. 1964. Radiation stresses in water waves; a physical discussion, with applications.Deep Sea Res. Oceanogr. Abst., 11(4):529-562.
Mei Q Z. 1984. Dynamics of Water Waves. Science Press, Beijing. (in Chinese)
Phillips O M. 1977. The Dynamics of the Upper Ocean. 2nd edn. Cambridge University Press, Cambridge.
Polton J A, Lewis D M, Belcher S E. 2005. The role of waveinduced Coriolis-Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35(4):444-457.
Qiao F L, Yang Y Z, Xia C S, Yuan Y L. 2008. The role of surface waves in the ocean mixed layer. Acta Oceanol.Sin., 27(3):30-37.
Qiao F L, Yuan Y L, Ezer T, Xia C S, Yang Y Z, Lü X G, Song Z Y. 2010.A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dyn., 60(5):1 339-1 355.
Qiao F L, Yuan Y L, Yang Y Z, Zheng Q A, Xia C S, Ma J. 2004. Wave-induced mixing in the upper ocean:Distribution and application to a global ocean circulation model. Geophys. Res. Lett., 31(11):L11303,
Shao J C, Zhao H, Shen C Y, Lü J H. 2015. Influence of Typhoon Matsa on phytoplankton chlorophyll-a in the northwest Pacific Ocean offshore and alongshore. J.Guangdong Ocean Univ., 35(4):67-74. (in Chinese with English abstract)
Shi Y F, Wu K J, Yang Y Z. 2016. Preliminary results of assessing the mixing of wave transport flux residual in the upper ocean with ROMS. J. Ocean Univ. China, 15(2):193-200.
Sun F, Qian C, Wang W et al. 2003. Wave-induced radiation stress and its driving effect on current. Sci. China, Ser. D, 33(8):791-798. (in Chinese)
Sun F, Wei Y L, Wu K J. 2006a. Wave-induced radiation stress under geostrophic condition. Acta Oceanol. Sin., 28(6):1-4. (in Chinese with English abstract)
Sun Q, Guan C L, Song J B. 2006b. Effect of wave breaking on turbulent energy budgets in ocean surface mixed layer.Oceanol. Limnol. Sin., 37(1):69-74. (in Chinese with English abstract)
Terray E A, Donelan M A, Agrawal Y C, Drennan W M, Kahma K K, Williams A J, Hwang P A, Kitaigorodskii S A. 1996. Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26(5):792-807.
Terray E A, Donelan M A, Agrawal Y C, Drennan W M, Kahma K K, Williams III A J, Hwang P A, Kitaigorodskii S A. 1997. Reply. J. Phys. Oceanogr., 27(10):2 308-2 309.
Terray E A, Drennan W M, Donelan M A. 2000. The vertical structure of shear and dissipation in the ocean surface layer. In:Proceedings Symposium on the Wind-driven Air-Sea Interaction. ADFA Document Production Centre, Canberra, Australia. p.239-245.
Wang G S, Qiao F L. 2008. Ocean temperature responses to Typhoon Mstsa in the East China Sea. Acta Oceanol. Sin., 27(4):26-38.
Wen S C, Yu Z W. 1984. Wave Theories and Calculation Principles. Science Press, Beijing. (in Chinese)
Wu Y G, Tao M D. 2011. Fundamental Dynamics of Water Waves. Fudan University Press, Shanghai. (in Chinese)
Xia C S, Qiao F L, Yang Y Z, Ma J, Yuan Y L. 2006. Threedimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res., 111(C11):C11S03,
Xia C S, Qiao F L, Zhang M N, Yang Y Z, Yuan Y L. 2004.Simulation of double cold cores of the 35°N section in the Yellow Sea with a wave-tide-circulation coupled model.Chin. J. Oceanol. Limnol., 22(3):292-298.
Xu Z G, Bowen A J. 1994. Wave-and wind-driven flow in water of finite depth. J. Phys. Oceanogr., 24(9):1 850-1 866.
Yang Y Z, Qiao F L, Xia C S, Ma J, Yuan Y L. 2003. Effect of ocean wave momenfum and mixing on upper ocean. Adv.Mar. Sci., 21(4):363-368. (in Chinese with English abstract)
Yang Y Z, Qiao F L, Xia C S, Ma J, Yuan Y L. 2004. Waveinduced Mixing in the Yellow Sea. Chin. J. Oceanol.Limnol., 22(3):322-326.
Yang Y Z, Zhan R, Teng Y. 2009. Parameterization of ocean wave-induced mixing processes for finite water depth.Acta Oceanol. Sin., 28(4):16-22.
Yin X Q, Qiao F L, Yang Y Z, Xia C S, Chen X Y. 2012. Argo data assimilation in ocean general circulation model of Northwest Pacific Ocean. Ocean Dyn., 62(7):1 059-1 071.
Yuan Y L, Pan Z D, Sun L T. 1991. LAGFD-WAM numerical wave model I. Basic physical model. Acta Oceanol. Sin., 10(4):483-488.
Yuan Y L, Qiao F L, Yin X Q, Han L, Lu M. 2012. Establishment of the ocean dynamic system with four sub-systems and the derivation of their governing equation sets. J.Hydrodyn., Ser. B, 24(2):153-168.
Yuan Y L, Qiao F L, Yin X Q, Han L. 2013. Analytical estimation of mixing coefficient induced by surface wavegenerated turbulence based on the equilibrium solution of the second-order turbulence closure model. Sci. China Earth Sci., 56(1):71-80.
Yuan Y, Qiao F, Hua F et al. 1999. The development of a coastal circulation numerical model:1. Wave-induced mixing and wave-current interaction. J. Hydrodyn. Ser. A, 14(4B):1-8. (in Chinese)
Zhang T C, Yang Y Z, Yin X Q, Shi Y F, Wang Y H. 2015.Influence of wave transport flux residual on upper temperature. Adv. Mar. Sci., 33(3):288-294. (in Chinese with English abstract)
Zhou W H, Yin K D, Harrison P J, Lee J H W. 2012. The influence of late summer typhoons and high river discharge on water quality in Hong Kong waters. Estuar., Coast Shelf Sci., 111:35-47.