Cite this paper:
ZONG Tong, HAN Xiqiu, LIU Jiqiang, WANG Yejian, QIU Zhongyan, YU Xing. Fractional crystallization processes of magma beneath the Carlsberg Ridge (57°-65°E)[J]. HaiyangYuHuZhao, 2020, 38(1): 75-92

Fractional crystallization processes of magma beneath the Carlsberg Ridge (57°-65°E)

ZONG Tong1,2, HAN Xiqiu2,3,4, LIU Jiqiang2, WANG Yejian2, QIU Zhongyan2, YU Xing2
1 Key Laboratory of Submarine Geosciences and Prospection of Ministry of Education, Ocean University of China, Qingdao 266100, China;
2 Key Laboratory of Submarine Geosciences, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
3 Ocean College, Zhejiang University, Zhoushan 316021, China;
4 School of Oceanography, Shanghai Jiaotong University, Shanghai 200030, China
Abstract:
Fractional crystallization of basaltic magma at variable depths influences strongly the geochemical compositions of mid-ocean ridge basalts (MORBs), especially at slow-spreading mid-ocean ridges. The Carlsberg Ridge is a typical slow-spreading ridge located in the northwestern Indian Ocean. In this study, we conducted petrological, geochemical and modelling studies of MORBs collected along the Carlsberg Ridge from 57°-65°E to understand the fractional crystallization processes of magma and the controls on variations in MORB geochemistry. Our results show that the mantle sources beneath the Carlsberg Ridge are heterogeneous even on the local scale of a segment; such heterogeneity may be ubiquitous beneath the Carlsberg Ridge. Mantle heterogeneity may be caused by the enriched components resulting in the "DUPAL" anomaly, whereas the effect of pyroxenite on mantle heterogeneity is negligible. The parental melts experienced crystallization of olivine, plagioclase and clinopyroxene prior to eruption, which played a significant role in the major and trace element variations in MORBs from the Carlsberg Ridge. The liquid lines of descent (LLDs), deduced from the forward modelling of three parental magma compositions using the Petrolog3 program at pressures between 1 atm and 10 kbar, demonstrate that clinopyroxene joined the olivine and plagioclase cotectic. The over-enrichment in highly incompatible elements relative to LLDs may be caused by the processes of replenishment-tapping-crystallization in magma chambers. The calculated crystallization pressures suggest that parental magmas beneath the Carlsberg Ridge experienced moderateto high-pressure crystallization and that crystallization beneath the slow-spreading Carlsberg Ridge may start at upper mantle depths.
Key words:    fractional crystallization|crystallization pressure|mantle heterogeneity|Carlsberg Ridge|midocean ridge basalt (MORB)   
Received: 2018-09-24   Revised:
Tools
PDF (1467 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZONG Tong
Articles by HAN Xiqiu
Articles by LIU Jiqiang
Articles by WANG Yejian
Articles by QIU Zhongyan
Articles by YU Xing
References:
Almeev R, Holtz F, Koepke J, Haase K, Devey C. 2008.Depths of partial crystallization of H2O-bearing MORB:phase equilibria simulations of basalts at the MAR near Ascension Island (7-11°S). Journal of Petrology, 49(1):25-45, https://doi.org/10.1093/petrology/egm068.
Arevalo R Jr, McDonough W F. 2010. Chemical variations and regional diversity observed in MORB. Chemical Geology, 271(1-2):70-85, https://doi.org/10.1016/j.chemgeo.2009.12.013.
Ariskin A A, Frenkel M Y, Barmina G S, et al. 1993. Comagmat:a Fortran program to model magma differentiation processes. Computers and Geosciences, 19(8):1 155-1 170, https://doi.org/10.1016/0098-3004(93)90020-6.
Banerjee R, Iyer S D. 1991. Petrography and chemistry of basalts from the Carlsberg Ridge. Journal of the Geological Society of India, 38(4):369-386.
Banerjee R, Iyer S D. 2003. Genetic aspects of basalts from the Carlsberg Ridge. Current Science, 85(3):299-305.
Bender J F, Hodges F N, Bence A E. 1978. Petrogenesis of basalts from the project FAMOUS area:experimental study from 0 to 15 kbars. Earth and Planetary Science Letters, 41(3):277-302, https://doi.org/10.1016/0012-821X(78)90184-X.
Borisov A, Shapkin A I. 1990. New empirical equation rating Fe3+/Fe2+ in magmas to their composition, oxygen fugacity, and temperature. Geochemistry International, 27(1):111-116.
Brunelli D, Cipriani A, Bonatti E. 2018. Thermal effects of pyroxenites on mantle melting below mid-ocean ridges. Nature Geoscience, 11(7):520-525, https://doi.org/10.1038/s41561-018-0139-z.
Chen L, Tang L M, Yu X, Dong Y H. 2017. Mantle source heterogeneity and magmatic evolution at Carlsberg Ridge(3.7°N):constrains from elemental and isotopic (Sr, Nd, Pb) data. Marine Geophysical Research, 38(1-2):47-60, https://doi.org/10.1007/s11001-016-9292-1.
Chun M H, Yu Z H, Zhai S K. 2015. The geochemistry and geological significances of basalts from Carlsberg Ridge in Indian Ocean. Acta Oceanologica Sinica, 37(8):47-62.(in Chinese with English Abstract)
Chun M H. 2015. The Research of Basalts from Carlsberg Ridge in Indian Ocean Ocean University of China, Qingdao. (in Chinese with English Abstract)
Collier M L, Kelemen P B. 2010. The Case for Reactive Crystallization at Mid-Ocean Ridges. Journal of Petrology, 51(9):1 913-1 940, https://doi.org/10.1093/petrology/egq043.
Coogan L A, O'Hara M J. 2015. MORB differentiation:in situ crystallization in replenished-tapped magma chambers. Geochimica et Cosmochimica Acta, 158:147-161, https://doi.org/10.1016/j.gca.2015.03.010.
Danyushevsky L V, Plechov P. 2011. Petrolog3:Integrated software for modelling crystallization processes.Geochemistry, Geophysics, Geosystems, 12(7):Q07021, https://doi.org/10.1029/2011GC003516.
Danyushevsky L V. 2001. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. Journal of Volcanology and Geothermal Research, 110(3-4):265-280, https://doi.org/10.1016/S0377-0273(01)00213-X.
Danyushevskyl L V, Sobolevz A V, Dmitrievz L V. 1996.Estimation of the pressure of crystallization and H2O content of MORB and BABB glasses:calibration of an empirical technique. Mineralogy and Petrology, 57(3-4):185-204, https://doi.org/10.1007/BF01162358.
Detrick R S, Mutter J C, Buhl P, et al. 1990. No evidence from multichannel reflection data for a crustal magma chamber in the MARK area on the Mid-Atlantic Ridge. Nature, 347(6288):61-64, https://doi.org/10.1038/347061a0.
Eason D, Sinton J. 2006. Origin of high-Al N-MORB by fractional crystallization in the upper mantle beneath the Galápagos Spreading Center. Earth and Planetary Science Letters, 252(3-4):423-436, https://doi.org/10.1016/j.epsl.2006.09.048.
Ford C E, Russell D G, Groven J A, et al. 1983. Olivine-liquid equilibria:temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. Journal of Petrology, 24(3):256-265.
Gale A, Dalton C A, Langmuir C H, et al. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3):489-518, https://doi.org/10.1029/2012GC004334.
Gale A, Langmuir C H, Dalton C A. 2014. The global systematics of ocean ridge basalts and their origin.Journal of Petrology, 55(6):1 051-1 082, https://doi.org/10.1093/petrology/egu017.
Green D H. 1976. Experimental testing of ‘equilibrium’ partial melting of peidotite under water-saturated, high pressure conditions. The Canadian Mineralogist, 14(3):255-268.
Grove T L, Kinzler R J, Bryan W B. 1992. Fractionation of mid-ocean ridge basalt (MORB). In:Morgan J P,Blackman D K, Sinton J M eds. Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, Washington, D.C. p.281-310, https://doi.org/10.1029/GM071p0281.
Herzberg C, Asimow P D. 2015. PRIMELT3 MEGA.XLSM software for primary magma calculation:Peridotite primary magma MgO contents from the liquidus to the solidus. Geochemistry, Geophysics, Geosystems, 16(2):563-578, https://doi.org/10.1002/2014GC005631.
Herzberg C. 2004. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. Journal of Petrology, 45(12):2 389-2 405, https://doi.org/10.1093/petrology/egh040.
Hofmann A W. 2003. Sampling mantle heterogeneity through oceanic basalts:isotopes and trace elements. Treatise on Geochemistry, 2:1-44.
Howarth G H, Harris C. 2017. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry.Earth and Planetary Science Letters, 475:143-151, https://doi.org/10.1016/j.epsl.2017.07.043.
Huang K H, Han X Q, Wang Y J, et al. 2017. Geochemical characteristics of basalt samples from the ridges adjacent to Aden-Owen-Carlsberg Triple Junction and their mantle sources. Journal of Marine Sciences, 35(4):44-60. (in Chinese with English abstract)
Iyer S D, Banerjee R. 1993. Mineral chemistry of Carlsberg Ridge basalts at 3°35'-3°41'N. Geo-Marine Letters, 13(3):153-158, https://doi.org/10.1007/BF01593188.
Iyer S D, Banerjee R. 1998. Importance of plagioclase morphology and composition in magmagenesis of the Carlsberg Ridge basalts. Journal of Indian Geophysical Union, 1(2):63-72.
Kelemen P B, Kikawa, E, Miller D J et al. 2007. Leg 209 summary:processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°-16°N. In:Kelemen P B, Kikawa E, Miller D J eds. Proc.
ODP, Sci. Results, 209, Ocean Drill. Program, 1-33, College Station, Tex., https://doi.org/10.2973/odp.proc.sr.209.001.2007.
Klein E M, Langmuir C H. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research Solid Earth, 92(B8):8 089-8 115. https://doi.org/10.1029/JB092iB08p08089
Langmuir C H, Bézos A, Escrig S, Parman S W. 2006.Chemical systematics and hydrous melting of the mantle in back-arc basins. In:Christie D M, Fisher C R, Lee S M, et al eds. Back-Arc Spreading Systems:Geological, Biological, Chemical, and Physical Interactions. Geophysical Monograph Series, Washington D.C. 166:87-146, https://doi.org/10.1029/166GM07.
Langmuir C H, Klein E M, Plank T. 1992. Petrological systematics of mid-ocean ridge basalts:constraints on melt generation beneath ocean ridges. In:Morgan J P, Blackman D K, Sinton J M eds. Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph Series, Washington D.C. 71:183-280, https://doi.org/10.1029/GM071p0183.
Le Roux P, Le Roex A, Schilling J G. 2002. Crystallization processes beneath the southern Mid-Atlantic Ridge (40-55°S), evidence for high-pressure initiation of crystallization.Contributions to Mineralogy and Petrology, 142(5):582-602, https://doi.org/10.1007/s00410-001-0312-y.
Mcdonough W F, Sun S S. 1995. The composition of the Earth.Chemical Geology, 120(3-4):223-253, https://doi.org/10.1016/0009-2541(94)00140-4.
Michael P J, Cornell W C. 1998. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges:Evidence from chlorine and major element chemistry of mid-ocean ridge basalts.
Journal of Geophysical Research:Solid Earth, 103(B8):18 325-18 356, https://doi.org/10.1029/98JB00791.
Murton, B J, Rona, P A. 2015. Carlsberg Ridge and MidAtlantic Ridge:Comparison of slow spreading centre analogues. Deep Sea Research Part II:Topical Studies in Oceanography, 121:71-84, https://doi.org/10.1016/j.dsr2.2015.04.021
Niu Y L, O'Hara M J. 2008. Global correlations of ocean ridge basalt chemistry with axial depth:a new perspective.Journal of Petrology, 49(4):633-664, https://doi.org/10.1093/petrology/egm051.
Niu Y L. 2016. The meaning of global ocean ridge basalt major element compositions. Journal of Petrology, 57(11-12):2 081-2 104, https://doi.org/10.1093/petrology/egw073.
O'Neill H S C, Jenner F E. 2012. The global pattern of traceelement distributions in ocean floor basalts. Nature, 491(7426):698-704, https://doi.org/10.1038/nature11678.
Rampone E, Hofmann A W. 2012. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos, 148(148):247-261, https://doi.org/10.1016/j.lithos.2012.06.018.
Ray D, Misra S, Banerjee R. 2013. Geochemical variability of MORBs along slow to intermediate spreading CarlsbergCentral Indian Ridge, Indian Ocean. Journal of Asian Earth Sciences, 70-71:125-141, https://doi.org/10.1016/j.jseaes.2013.03.008.
Rhodes J M, Dungan M A. 2013. The evolution of ocean-floor basaltic magmas. In:Talwani M, Harrison C G, Hayes D E eds. Deep Drilling Results in the Atlantic Ocean:Ocean Crust. Maurice Ewing Series, Washington, D.C. p.262-272.
Shinjo R, Meshesha D, Orihashi Y, Haraguchi S, Tamaki K. 2015. Sr-Nd-Pb-Hf isotopic constraints on the diversity of magma sources beneath the Aden Ridge (central Gulf of Aden) and plume-ridge interaction. Journal of Mineralogical and Petrological Sciences, 110(3):97-110, https://doi.org/10.2465/jmps.141211.
Sinton J M, Detrick R S. 1992. Mid-ocean ridge magma chambers. Journal of Geophysical Research:Solid Earth, 97(B1):197-216, https://doi.org/10.1029/91JB02508.
Sinton J M, Fryer P. 1987. Mariana Trough lavas from 18°N:Implications for the origin of back arc basin basalts.Journal of Geophysical Research:Solid Earth, 92(B12):12 782-12 802, https://doi.org/10.1029/JB092iB12p12782.
Sobolev A V, Hofmann A W, Kuzmin D V, Yaxley G M, Arndt N T, Chung S L, Danyushevsky L V, Elliott T, Frey F A, Garcia M O, Gurenko A A, Kamenetsky V S, Kerr A C, Krivolutskaya N A, Matvienkov V V, Nikogosian I K, Rocholl A, Sigurdsson I A, Sushchevskaya N M, Teklay M. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316(5823):412-417, https://doi.org/10.1126/science.1138113.
Villiger S, Müntener O, Ulmer P. 2007. Crystallization pressures of mid-ocean ridge basalts derived from major element variations of glasses from equilibrium and fractional crystallization experiments. Journal of Geophysical Research:Solid Earth, 112(B1):B01202, https://doi.org/10.1029/2006JB004342.
Villiger S, Ulmer P, Müntener O, Thompson A B. 2004. The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization-an experimental study at 1·0 GPa. Journal of Petrology, 45(12):2 369-2 388, https://doi.org/10.1093/petrology/egh042.
Wanless V D, Behn M D. 2017. Spreading rate-dependent variations in crystallization along the global mid-ocean ridge system. Geochemistry, Geophysics, Geosystems, 18(8):3 016-3 033, https://doi.org/10.1002/2017GC006924.
Wanless V D, Shaw A M. 2012. Lower crustal crystallization and melt evolution at mid-ocean ridges. Nature Geoscience, 5(9):651-655, https://doi.org/10.1038/ngeo1552.
Weaver J S, Langmuir C H. 1990. Calculation of phase equilibrium in mineral-melt systems. Computers & Geosciences, 16(1):1-19, https://doi.org/10.1016/0098-3004(90)90074-4.
Yang H J, Kinzler R J, Grove T L. 1996. Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contributions to Mineralogy and Petrology, 124(1):1-18, https://doi.org/10.1007/s004100050169.
Zhang G L, Zong C L, Yin X B, Li H. 2012. Geochemical constraints on a mixed pyroxenite-peridotite source for East Pacific Rise basalts. Chemical Geology, 330-331:176-187, https://doi.org/10.1016/j.chemgeo.2012.08.033.
Zhang G L. 2016. Compositional and temperature variations of the Pacific upper mantle since the Cretaceous. Acta Oceanologica Sinica, 35(4):19-25, https://doi.org/10.1007/s13131-016-0839-4.