Cite this paper:
LI Yuanxiang, CAI Xuehua, GU Wenhui, WANG Guangce. Transcriptome analysis of carotenoid biosynthesis in Dunaliella salina under red and blue light[J]. Journal of Oceanology and Limnology, 2020, 38(1): 177-185

Transcriptome analysis of carotenoid biosynthesis in Dunaliella salina under red and blue light

LI Yuanxiang1,2,3, CAI Xuehua1,2,3, GU Wenhui1,2, WANG Guangce1,2
1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
The quality of light is an important abiotic factor that affects the growth and development of photosynthetic organisms. In this study, we exposed the unicellular green alga Dunaliella salina to red (660 nm) and blue (450 nm) light and analyzed the cell growth, total carotenoid content, and transcriptomes. The growth of D. salina was enhanced by illumination with red light, whereas blue light was not able to promote the algal growth. In contrast, the total carotenoid content increased under both red and blue light. The RNA of D. salina was sequenced and the transcriptomic response of algal cells to red and blue light was investigated. Six transcripts encoding for the blue light receptor cryptochrome were identified, and transcripts involved in the carotenoid metabolism were up-regulated under both red and blue light. Transcripts encoding for photoprotective enzymes related to the scavenging of reactive oxygen species were up-regulated under blue light. The present transcriptomic study provides a more comprehensive understanding of carotenoid biosynthesis in D. salina under different wavelengths of light.
Key words:    blue light|carotenoid|Dunaliella|red light|transcriptome   
Received: 2019-03-11   Revised:
Tools
PDF (729 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LI Yuanxiang
Articles by CAI Xuehua
Articles by GU Wenhui
Articles by WANG Guangce
References:
Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol., 11(10):R106, https://doi.org/10.1186/gb-2010-11-10-r106.
Banet G, Pick U, Zamir A. 2000. Light-harvesting complex II pigments and proteins in association with Cbr, a homolog of higher-plant early light-inducible proteins in the unicellular green alga Dunaliella. Planta, 210(6):947-955.
Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinnickel M, Dewez D, Ikoma D, Grossman A R, Kottke T, Mittag M. 2012. A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. Plant Cell, 24(7):2 992-3 008.
Ben-Amotz A, Avron M. 1981. Glycerol and ß-carotene metabolism in the halotolerant alga Dunaliella:a model system for biosolar energy conversion. Trends Biochem.Sci., 6:297-299.
Ben-Amotz A, Shaish A, Avron M. 1989. Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation.Plant Physiol., 91(3):1 040-1 043.
Borowitzka M A, Borowitzka L J, Kessly D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol., 2(2):111-119.
Chen M, Chory J, Fankhauser C. 2004. Light signal transduction in higher plants. Annu. Rev. Genet., 38:87-117.
Coesel S N, Baumgartner A C, Teles L M, Ramos A A, Henriques N M, Cancela L, Varela J C S. 2008. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar. Biotechnol., 10(5):602-611.
Consentino L, Lambert S, Martino C, Jourdan N, Bouchet P E, Witczak J, Castello P, El-Esawi M, Corbineau F, d'Harlingue A, Ahmad M. 2015. Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol., 206(4):1 450-1 462.
El-Esawi M, Arthaut L D, Jourdan N, d'Harlingue A, Link J, Martino C F, Ahmad M. 2017. Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome. Sci. Rep., 7(1):13 875.
Fang L, Qi S Y, Xu Z Y, Wang W, He J, Chen X, Liu J H. 2017.De novo transcriptomic profiling of Dunaliella salina reveals concordant flows of glycerol metabolic pathways upon reciprocal salinity changes. Algal Res., 23:135-149.
Fu W Q, Guðmundsson Ó, Paglia G, Herjólfsson G, Andrésson Ó S, Palsson B Ø, Brynjólfsson S. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol., 97(6):2 395-2 403.
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F D, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29(7):644.
Han S I, Kim S, Lee C, Choi Y E. 2019. Blue-red LED wavelength shifting strategy for enhancing beta-carotene production from halotolerant microalga, Dunaliella salina. J. Microbiol., 57(2):101-106.
Hejazi M A, Wijffels R H. 2003. Effect of light intensity on β-carotene production and extraction by Dunaliella salina in two-phase bioreactors. Biomol. Eng., 20(4-6):171-175.
Hong L, Liu J L, Midoun S Z, Miller P C. 2017. Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina. J. Zhejiang Univ. Sci. B, 18(10):833-844.
Jourdan N, Martino C F, El-Esawi M, Witczak J, Bouchet P E, d'Harlingue A, Ahmad M. 2015. Blue-light dependent ROS formation by Arabidopsis cryptochrome-2 may contribute toward its signaling role. Plant Signal. Behav., 10(8):e1042647.
Kim D G, Lee C, Park S M, Choi Y E. 2014. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresour. Technol., 159:240-248.
Lamers P P, Van De Laak C C W, Kaasenbrood P S, Lorier J, Janssen M, De Vos R C H, Bino R J, Wijffels R H. 2010.Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol. Bioeng., 106(4):638-648.
Lin C T. 2002. Blue light receptors and signal transduction.Plant Cell, 14(S1):S207-S225.
Ma R J, Thomas-Hall S R, Chua E T, Alsenani F, Eltanahy E, Netzel M E, Netzel G, Lu Y H, Schenk P M. 2018. Gene expression profiling of astaxanthin and fatty acid pathways in Haematococcus pluvialis in response to different LED lighting conditions. Bioresour. Technol., 250:591-602.
Matthijs H C P, Balke H, Van Hes U M, Kroon B M A, Mur L R, Binot R A. 1996. Application of light-emitting diodes in bioreactors:flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol.Bioeng., 50(1):98-107.
Mayne S T. 1996. Beta-carotene, carotenoids, and disease prevention in humans. FASEB J, 10(7):690-701.
Mohsenpour S F, Willoughby N. 2013. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresour. Technol., 142:147-153.
Moriya Y, Itoh M, Okuda S, Yoshizawa A C, Kanehisa M. 2007. KAAS:an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res., 35(S2):W182-W185.
Pick U. 1998. Dunaliella-a model extremophilic alga. Isr. J.Plant Sci., 46(2):131-139.
Pick U, Karni L, Avron M. 1986. Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina.Plant Physiol., 81(1):92-96.
Polle J E W, Barry K, Cushman J, Schmutz J, Tran D, Hathwaik L T, Yim W C, Jenkins J, McKie-Krisberg Z, Prochnik S, Lindquist E, Dockter R B, Adam C, Molina H, Bunkenborg J, Jin E, Buchheim M, Magnuson J. 2017. Draft nuclear genome sequence of the halophilic and beta-caroteneaccumulating green alga Dunaliella salina strain CCAP19/18. Genome Announc., 5(43):e01105-01117.
Raja R, Hemaiswarya S, Rengasamy R. 2007. Exploitation of Dunaliella for β-carotene production. Appl. Microbiol.Biotechnol., 74(3):517-523.
Rossa M M, de Oliveira M C, Okamoto O K, Lopes P F, Colepicolo P. 2002. Effect of visible light on superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). J. Appl. Phycol., 14(3):151-157.
Sandmann G, Römer S, Fraser P D. 2006. Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab. Eng., 8(4):291-302.
Schulze P S C, Pereira H G C, Santos T F C, Schueler L, Guerra R, Barreira L A, Perales J A, Varela J C S. 2016.Effect of light quality supplied by light emitting diodes(LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Res., 16:387-398.
Shaish A, Avron M, Pick U, Ben-Amotz A. 1993. Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta, 190(3):363-368.
Siefermann-Harms D. 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant., 69(3):561-568.
Smith D R, Lee R W, Cushman J C, Magnuson J K, Tran D, Polle J E W. 2010. The Dunaliella salina organelle genomes:large sequences, inflated with intronic and intergenic DNA. BMC Plant Biol., 10:83.
Von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H. 1997. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J., 12(3):625-634.
Wang S K, Stiles A R, Guo C, Liu C Z. 2014. Microalgae cultivation in photobioreactors:an overview of light characteristics. Eng. Life Sci., 14(6):550-559.
Xie X J, Huang A Y, Gu W H, Zang Z R, Pan G H, Gao S, He L W, Zhang B Y, Niu J F, Lin A P, Wang G C. 2016.Photorespiration participates in the assimilation of acetate in Chlorella sorokiniana under high light. New Phytol., 209(3):987-998.
Young A J, Frank H A. 1996. Energy transfer reactions involving carotenoids:quenching of chlorophyll fluorescence. J. Photochem. Photobiol. B:Biol., 36(1):3-15.
Li Y X, Gu W H, Huang A Y, Xie X J, Wu S C, Wang G C. 2019. Transcriptome analysis reveals regulation of gene expression during photoacclimation to high irradiance levels in Dunaliella salina (Chlorophyceae). Phycological Res., https://doi.org/10.1111/pre.12379.
Copyright © Haiyang Xuebao