Cite this paper:
Hyoung Sul LA, Hyungbeen LEE, Donhyug KANG, SangHoon LEE, Hyoung Chul SHIN. Ex situ echo sounder target strengths of ice krill Euphausia crystallorophias[J]. Journal of Oceanology and Limnology, 2015, 33(3): 802-808

Ex situ echo sounder target strengths of ice krill Euphausia crystallorophias

Hyoung Sul LA1, Hyungbeen LEE2, Donhyug KANG2, SangHoon LEE1, Hyoung Chul SHIN1
1 Division of Polar Ocean Environment Research, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Korea;
2 Maritime Security Research Center, Korea Institute of Ocean Science and Technology, Korea
Abstract:
Ice krill is the keystone species in the neritic ecosystem in the Southern Ocean, where it replaces the more oceanic Antarctic krill. It is essential to understand the variation of target strength (TS in dB re 1 m2) with the different body size to accurately estimate ice krill stocks. However, there is comparatively little knowledge of the acoustic backscatter of ice krill. The TS of individual, formalin-preserved, tethered ice krill was measured in a freshwater test tank at 38, 120, and 200 kHz with a calibrated split-beam echo sounder system. Mean TS was obtained from21 individual ice krill with a broad range of body lengths (L: 13-36 mm). The length (L, mm) to wet weight (W; mg) relationship for ice krill was W =0.001 218×103 × L3.53 (R2 =0.96). The mean TS-to-length relationship were TS38kHz =-177.4+57log 10 (L), (R2 = 0.86); TS120 kHz = -129.9+31.56log 10 (L), (R2 =0.87); and TS200 kHz =-117.6+24.66log 10 (L), (R2 =0.84). Empirical estimates of the relationship between the TS and body length of ice krill were established at 38, 120, and 200 kHz and compared with predictions obtained from both the linear regression model of Greene et al. (1991) and the Stochastic Distorted Wave Born Approximation (SDWBA) model. This result might be applied to improve acoustic detection and density estimation of ice krill in the Southern Ocean. Further comparative studies are needed with in situ target strength including various body lengths of ice krill.
Key words:    ice krill|Euphausia crystallorophias|ex situ target strength|split-beam echo sounder   
Received: 2014-03-27   Revised: 2014-09-22
Tools
PDF (741 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Hyoung Sul LA
Articles by Hyungbeen LEE
Articles by Donhyug KANG
Articles by SangHoon LEE
Articles by Hyoung Chul SHIN
References:
Amakasu K, Furusawa M. 2006. The target strength of Antarctic krill (Euphausia superba) measured by the split-beam method in a small tank at 70 kHz. ICES J. Mar.Sci., 63 : 36-45.
Anderson V C. 1950. Sound scattering from a fluid sphere. J.Acoust. Soc. Am., 22 : 426-431.
Azzali M, Leonori I, Biagiotti I, De Felice A, Angiolillo M,Bottaro M, Vacchi M. 2010. Target strength studies on Antarctic silverfish (Pleuragramma antarcticum) in the Ross Sea. CCAMLR Science, 17 : 75-104.
Azzali M, Leonori I, De Felice A, Russo A. 2006. Spatialtemporal relationships between two euphausiid species in the Ross Sea. Chem. Ecol., 22 : 219-233.
BioSonics. 2005. User Guide; Visual Acquisition, version 5.0.Seattle. p.64.
Bottino N R. 1974. The fatty acids of Antarctic phytoplankton and Euphausiids. Fatty acid exchange among levels of the Ross Sea. Mar. Biol., 27 : 197-204.
Bushuev S G. 1986. Feeding of Minke whales, Balaenoptera acutorostrata, in the Antarctic. Rep. Int. Whal. Commun., 36 : 241-245.
CCAMLR. 2007. Report of the twenty sixth meeting of the Scientific Committee. SC-CAMLR-XXVI, Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Australia.
Chu D, Foote K G, Stanton T K. 1993. Further analysis of target strength measurements of Antarctic krill at 38 and 120 kHz: comparison with deformed cylinder model and inference of orientation distribution. J. Acoust. Soc. Am., 93 : 2 985-2 988.
Chu D, Wiebe P H. 2005. Measurements of sound-speed and density contrasts of zooplankton in Antarctic waters.ICES J. Mar. Sci., 62 : 818-831.
Demer D A, Conti S G. 2005. New target-strength model indicates more krill in the Southern Ocean. ICES J. Mar.Sci., 62 : 25-32.
Foote K G, Everson I, Watkins J L, Bone D G. 1990. Target strengths of Antarctic krill (Euphausia superba) at 38 and 120 kHz. J. Acoust. Soc. Am., 87 (1): 16-24.
Foote K G, Knudsen H P, Vestnes G, MacLennan D N,Simmonds E J. 1987. Calibration of acoustic instruments for fish density estimation: a practical guide, cooperative research report. Int. Coun. Exp. Sea, 144 : 1-69.
Greene C H, Stanton T K, Wiebe P H, McClatchie S. 1991.Acoustic estimates of Antarctic krill. Nature, 349 : 110.
Greenlaw C F. 1977. Backscattering spectra of preserved zooplankton. J. Acoust. Soc. Am., 62 : 44-52.
Hewitt R P, Demer D A. 1991. Krill abundance. Nature, 353 : 310.
Hewitt R P, Watkins J L, Naganobu M, Tshernyshkov P,Brierley A S, Demer D A, Kasatkina S, Takao Y, Goss C,Malyshko A, Brandon M A, Kawaguchi S, Siegel V,Trathan P N, Emery J H, Everson I, Miller D G M. 2002.Setting a precautionary catch limit for Antarctic krill.Oceanogr., 15 : 26-33.
Hosie G W. 1994. The macrozooplankton communities in the Prydz Bay region, Antarctica. In : El-Sayed S Z ed.Southern Ocean Ecology: The BIOMASS Perspective.Cambridge Univ. Press, USA. p.93-123.
Johnson R K. 1977. Sound scattering from a fluid sphere revisited. J. Acoust. Soc. Am., 61 : 375-377.
Madureira L S P, Everson I, Murphy E J. 1993. Interpretation of acoustic data at two frequencies to discriminate between Antarctic krill (Euphausia superba Dana) and other scatterers. J. Plankton Res., 15 : 787-802.
McGehee D E, O'Driscoll R L, Traykovski M. 1998. Effects of orientation on acoustic scattering from Antarctic krill at 120 kHz. Deep Sea Res. Part II, 45 : 1 273-1 294.
Medwin H, Caly C S. 1998. Fundamental of Acoustical Oceanography. Academic Press. p.712.
Morris D J, Watkins J L, Ricketts C, Buchholz F, Priddle J. 1988 An assessment of the merits of length and weight measurements of Antarctic krill Euphausia superba. Br.Antarct. Surv. Bull., 79 : 27-50.
Pakhomov E A, Perissinotto R, Froneman P W. 1998.Abundance and trophodynamics of Euphausia crystallorophias in the shelf region of the Lazarev Sea during austral spring and summer. J. Marine Syst., 17 : 313-324.
Richter K E. 1985. Acoustic scattering at 1.2 MHz from individual zooplankters and copepod populations. Deep Sea Res., 32 : 149-161.
Sala A, Azzali M, Russo A. 2002. Krill of the Ross Sea: distribution, abundance and demography of Euphausia superb a and Euphausia crystallorophias during the Italian Antarctic Expedition (January-February 2000). Sci. Mat., 66 : 123-133.
SC-CAMLR. 2005. Report of the First Meeting of the Subgroup on Acoustic Survey and Analysis Method (SGASAM).In : Report of the Twenty-fourth Meeting for the Scientific Committee (SC-CAMLR-XXIV), Annex 6.CCAMLR, Hobart, Australia. p.563-585.
Smith J N, Ressler P H, Warren J D. 2010. Material properties of euphausiids and other zooplankton from the Bering Sea. J. Acoust. Soc. Am., 128 : 2 664-2 680.
Soule M, Barange M, Solli H, Hampton I. 1997. Performance of a new phase algorithm for discriminating between single and overlapping echoes in a split-beam echo sounder. ICES J. Mar. Sci., 54 : 934-938.
Steedman H F. 1976. General and applied data on formaldehyde fixation and preservation of marine zooplankton. In :Steedman H F ed. Zooplankton Fixation and Preservation.UNESCO Press. p.103-154.
Steedman H F. 1976. Osmotic pressure in fixation and preservation. In : Steedman H F ed. Monographs on Oceanographic Methodology: 4. Zooplankton Fixation and Preservation. UNESCO Press, Paris. p.186-188.
Copyright © Haiyang Xuebao